Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 100(3-1): 032201, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639901

ABSTRACT

We present a wave-memory-driven system that exhibits intermittent switching between two propulsion modes in free space. The model is based on a pointlike particle emitting periodically cylindrical standing waves. Submitted to a force related to the local wave-field gradient, the particle is propelled, while the wave field stores positional information on the particle trajectory. For long memory, the linear motion is unstable and we observe erratic switches between two propulsive modes: linear motion and diffusive motion. We show that the bimodal propulsion and the stochastic aspect of the dynamics at long time are generated by a Shil'nikov chaos. The memory of the system controls the fraction of time spent in each phase. The resulting bimodal dynamics shows analogies with intermittent search strategies usually observed in living systems of much higher complexity.

2.
Chaos ; 28(9): 096001, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278632

ABSTRACT

Hydrodynamic quantum analogs is a nascent field initiated in 2005 by the discovery of a hydrodynamic pilot-wave system [Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Nature 437, 208 (2005)]. The system consists of a millimetric droplet self-propeling along the surface of a vibrating bath through a resonant interaction with its own wave field [J. W. M. Bush, Annu. Rev. Fluid Mech. 47, 269-292 (2015)]. There are three critical ingredients for the quantum like-behavior. The first is "path memory" [A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, and Y. Couder, J. Fluid Mech. 675, 433-463 (2011)], which renders the system non-Markovian: the instantaneous wave force acting on the droplet depends explicitly on its past. The second is the resonance condition between droplet and wave that ensures a highly structured monochromatic pilot wave field that imposes an effective potential on the walking droplet, resulting in preferred, quantized states. The third ingredient is chaos, which in several systems is characterized by unpredictable switching between unstable periodic orbits. This focus issue is devoted to recent studies of and relating to pilot-wave hydrodynamics, a field that attempts to answer the following simple but provocative question: Might deterministic chaotic pilot-wave dynamics underlie quantum statistics?

3.
Phys Rev E ; 94(4-1): 042224, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841606

ABSTRACT

The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case, back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of the droplet with its own past. The resulting "memory force" is investigated and characterized experimentally, numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a memory-induced dynamical attractor for the droplet's motion.

4.
Nat Commun ; 5: 3219, 2014.
Article in English | MEDLINE | ID: mdl-24476755

ABSTRACT

A growing number of dynamical situations involve the coupling of particles or singularities with physical waves. In principle these situations are very far from the wave particle duality at quantum scale where the wave is probabilistic by nature. Yet some dual characteristics were observed in a system where a macroscopic droplet is guided by a pilot wave it generates. Here we investigate the behaviour of these entities when confined in a two-dimensional harmonic potential well. A discrete set of stable orbits is observed, in the shape of successive generalized Cassinian-like curves (circles, ovals, lemniscates, trefoils and so on). Along these specific trajectories, the droplet motion is characterized by a double quantization of the orbit spatial extent and of the angular momentum. We show that these trajectories are intertwined with the dynamical build-up of central wave-field modes. These dual self-organized modes form a basis of eigenstates on which more complex motions are naturally decomposed.

5.
Article in English | MEDLINE | ID: mdl-25615197

ABSTRACT

A bouncing droplet, self-propelled by its interaction with the waves it generates, forms a classical wave-particle association called a "walker." Previous works have demonstrated that the dynamics of a single walker is driven by its global surface wave field that retains information on its past trajectory. Here we investigate the energy stored in this wave field for two coupled walkers and how it conveys an interaction between them. For this purpose, we characterize experimentally the "promenade modes" where two walkers are bound and propagate together. Their possible binding distances take discrete values, and the velocity of the pair depends on their mutual binding. The mean parallel motion can be either rectilinear or oscillating. The experimental results are recovered analytically with a simple theoretical framework. A relation between the kinetic energy of the droplets and the total energy of the standing waves is established.

6.
Article in English | MEDLINE | ID: mdl-23944402

ABSTRACT

Bouncing droplets can self-propel laterally along the surface of a vibrated fluid bath by virtue of a resonant interaction with their own wave field. The resulting walking droplets exhibit features reminiscent of microscopic quantum particles. Here we present the results of an experimental investigation of droplets walking in a circular corral. We demonstrate that a coherent wavelike statistical behavior emerges from the complex underlying dynamics and that the probability distribution is prescribed by the Faraday wave mode of the corral. The statistical behavior of the walking droplets is demonstrated to be analogous to that of electrons in quantum corrals.

7.
Phys Rev Lett ; 107(1): 018103, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21797576

ABSTRACT

Using swelling hydrogels, we study the evolution of a thin circular artificial tumor whose growth is confined at the periphery. When the volume of the outer proliferative ring increases, the tumor loses its initial symmetry and bifurcates towards an oscillatory shape. Depending on the geometrical and elastic parameters, we observe either a smooth large-wavelength undulation of the swelling layer or the formation of sharp creases at the free boundary. Our experimental results as well as previous observations from other studies are in very good agreement with a nonlinear poroelastic model.


Subject(s)
Neoplasms/pathology , Nonlinear Dynamics , Humans , Solvents
8.
Proc Natl Acad Sci U S A ; 106(21): 8453-8, 2009 May 26.
Article in English | MEDLINE | ID: mdl-19423667

ABSTRACT

The forms resulting from growth processes are highly sensitive to the nature of the driving impetus, and to the local properties of the medium, in particular, its isotropy or anisotropy. In turn, these local properties can be organized by growth. Here, we consider a growing plant tissue, the shoot apical meristem of Arabidopsis thaliana. In plants, the resistance of the cell wall to the growing internal turgor pressure is the main factor shaping the cells and the tissues. It is well established that the physical properties of the walls depend on the oriented deposition of the cellulose microfibrils in the extracellular matrix or cell wall; this order is correlated to the highly oriented cortical array of microtubules attached to the inner side of the plasma membrane. We used oryzalin to depolymerize microtubules and analyzed its influence on the growing meristem. This had no short-term effect, but it had a profound impact on the cell anisotropy and the resulting tissue growth. The geometry of the cells became similar to that of bubbles in a soap froth. At a multicellular scale, this switch to a local isotropy induced growth into spherical structures. A theoretical model is presented in which a cellular structure grows through the plastic yielding of its walls under turgor pressure. The simulations reproduce the geometrical properties of a normal tissue if cell division is included. If not, a "cell froth" very similar to that observed experimentally is obtained. Our results suggest strong physical constraints on the mechanisms of growth regulation.


Subject(s)
Arabidopsis/cytology , Arabidopsis/growth & development , Arabidopsis/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival , Computer Simulation , Dinitrobenzenes/pharmacology , Meristem/cytology , Meristem/drug effects , Meristem/growth & development , Models, Biological , Sulfanilamides/pharmacology
9.
Science ; 322(5908): 1650-5, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19074340

ABSTRACT

A central question in developmental biology is whether and how mechanical forces serve as cues for cellular behavior and thereby regulate morphogenesis. We found that morphogenesis at the Arabidopsis shoot apex depends on the microtubule cytoskeleton, which in turn is regulated by mechanical stress. A combination of experiments and modeling shows that a feedback loop encompassing tissue morphology, stress patterns, and microtubule-mediated cellular properties is sufficient to account for the coordinated patterns of microtubule arrays observed in epidermal cells, as well as for patterns of apical morphogenesis.


Subject(s)
Arabidopsis/growth & development , Meristem/growth & development , Microtubules/physiology , Plant Shoots/growth & development , Arabidopsis/anatomy & histology , Arabidopsis/cytology , Cell Shape , Cell Wall/physiology , Cell Wall/ultrastructure , Cellulose , Dinitrobenzenes/pharmacology , Meristem/cytology , Microfibrils/physiology , Microtubules/ultrastructure , Models, Biological , Morphogenesis , Plant Epidermis/physiology , Plant Shoots/anatomy & histology , Plant Shoots/cytology , Plant Stems/cytology , Plant Stems/growth & development , Pressure , Stress, Mechanical , Sulfanilamides/pharmacology , Tubulin Modulators/pharmacology
10.
Phys Rev Lett ; 97(15): 154101, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-17155330

ABSTRACT

A droplet bouncing on a vertically vibrated bath can become coupled to the surface wave it generates. It thus becomes a "walker" moving at constant velocity on the interface. Here the motion of these walkers is investigated when they pass through one or two slits limiting the transverse extent of their wave. In both cases a given single walker seems randomly scattered. However, diffraction or interference patterns are recovered in the histogram of the deviations of many successive walkers. The similarities and differences of these results with those obtained with single particles at the quantum scale are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...