Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15891, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987570

ABSTRACT

Rapid and uncontrolled urban growth and land use changes in watersheds worldwide have led to increased surface runoff within metropolitan areas, coupled with climate change, creating a risk for residents during the rainy season. The city of San Luis Potosí is no exception to this phenomenon. One affected watercourse is the Garita Stream, which flows inside the city near urbanization. It is essential to analyze the effects of urban sprawl on this stream based on historical precipitation data for the town. Hydrological and topographical information were required to conduct this research. The hydrological study of the basin involved analyzing the region's geomorphology and historical climatological data. For the stream's topography, aerial photogrammetry using an unmanned aerial Vehicle (UAV) and Global Navigation Satellite System (GNSS) equipment was employed to conduct topographic surveys in the area. To find out when the Garita stream would overflow and which areas are most likely to flood, numerical modeling was done using 1D, 2D, and 3D programs like SWMM5 (Storm Water Management Model), HEC-RAS (Hydrologic Engineering Center's River Analysis System), and EDFC Explorer (Environmental Fluid Dynamics Code). These models simulated different return periods and their correlation with current flooding events recorded in the area, thereby further proposing solutions to mitigate overflow issues. By conducting these simulations and analyzing the results, solutions can be suggested to address the overflow problems in the area based on historical flood events at various return periods caused by the Garita Stream.

2.
Sci Rep ; 11(1): 13023, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34158558

ABSTRACT

Sanitary and industrial wastewater discharged into rivers, is a general problem that occurs in most of the world and Mexico is not the exception, the main goal of this research is to determine based on simulations of pollutants concentrations, the assimilation capacity of the Gallinas River against discharges of agricultural and industrial wastewater from the cultivation and processing of sugar cane under two different hypothetical simulation scenarios, based on reproducing two well know scenarios. In sugarcane cultivation, large quantities of fertilizers are used whose main active components are based on nitrogen or phosphorus compounds, therefore, the wastewater resulting from sugarcane processing contains a high organic content from 20 to 40% of inorganic compounds, such as nitrogenous substances, organic acids, and phosphorous sulfates. For this reason, the physical-chemical variables of interest analyzed in this work are the PO[Formula: see text] (phosphate), NO[Formula: see text] (nitrate), and DO (dissolved oxygen). With the simulation results according to each scenery, it can be determined, that despite the continuous discharge of polluting elements, the Gallinas River has a good assimilation capacity thanks to reaeration processes that permit efficient recovery of the dissolved oxygen in the water column. Gallinas River is located in the region known as the Huasteca Potosina, this investigation is relevant for the region due to the River is of vital importance being the main tributary that allows socioeconomic development activities in this zone. To carry out the simulations, was used the Explorer Modeling System 8.4 (EFCD) model and was performed two samplings campaign along 15 km in the water body to calibrate the numerical model to represent the dry and wet seasons during May and September respectively named as calibration scenarios.

3.
Sci Rep ; 10(1): 16629, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33024192

ABSTRACT

This work presents a non-linear Self-Consistent (SC) micromechanics method to model the observed physical elastic properties of a terrigenous formation with the purpose to obtain its depth mineral volume fractions profile. In this approach, it is first assumed that the observed physical elastic properties obtained from well logs, such as the density [Formula: see text] and the elastic compressional [Formula: see text] and shear [Formula: see text] velocities, are a non-linear relationship of the unknown mineral volume fractions [Formula: see text]. Then, a gradient descent algorithm is implemented to seek for those volume fractions [Formula: see text] for which differences between modelled and observed physical elastic properties are minimum. It is assumed that quartz, calcite and clay are the main comprising minerals of the formation. Obtained volume fractions profile follow the same general trends to those estimated by implementing the Linear Least-Squares Inversion LLSI method which is widely used in petrophysical analysis to obtain mineral concentrations from density [Formula: see text], photoelectric effect [Formula: see text] and compressional slowness [Formula: see text] well logs. Results also show that calcite and clay volume fractions from these two methods are highly correlated while quartz volume fractions show low correlation. Further comparison between clay concentrations from SC method with clay concentrations calculated from direct measurements of gamma ray GR well logs used as a guideline also exhibits high correlation. These results suggest that the SC method is better suited to obtain clay and calcite volume fractions rather than quartz volume fractions. However, SC method can provide with insights about the general distribution of quartz along the borehole.

SELECTION OF CITATIONS
SEARCH DETAIL
...