Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Opt Lett ; 48(21): 5531-5534, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910695

ABSTRACT

We experimentally demonstrate how a concatenation of the standard and microstructure fiber segments permits adjusting the four-wave mixing sideband position over a large spectral range by varying the chirp of an input pulsed pump at a fixed wavelength in the presence of a self-phase modulation. The blue- and redshifted sidebands can stand aside over ∼200 nm and ∼450 nm from the pump, respectively, which agrees well with the numerical simulations. We validate our approach by showing the feasibility of CARS imaging.

2.
Opt Lett ; 48(17): 4582-4585, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656560

ABSTRACT

Hyperspectral spectroscopy requires light sources with wide spectral ranges from the visible to the mid-infrared. Here, we demonstrate the first fiber-based mid-infrared supercontinuum covering three octaves of frequency by leveraging 1-µm laser technology. The process consists in spectral broadening of a 1064-nm pump toward 0.48-2.5 µm in a graded-index multimode fiber, followed by a fluoro-indate fiber used to reach deeper into the near infrared (4.3 µm). Finally, an arsenic selenide chalcogenide fiber allows us to reach the 6-µm wavelength region, providing a 0.75-6-µm supercontinuum. We illustrate the potential of this light source by recording mid-infrared absorption spectra of organic compounds.

3.
Opt Express ; 30(10): 16104-16114, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221462

ABSTRACT

We demonstrate how spatial beam self-cleaning and supercontinuum generation in graded-index multimode optical fibers can be directly applied in multiplex coherent anti-Stokes Raman Scattering (M-CARS) spectroscopy. Although supercontinuum generation causes pump depletion mainly in the center of the beam, the partial recovery of the pump brightness due to self-cleaning may enable self-referenced M-CARS, with no additional delay lines to synchronize pump and Stokes waves. As a proof-of-principle, we report examples of imaging of single chemical compounds and polystyrene beads. The new scheme paves the way towards simpler M-CARS systems based on multimode fiber sources.

4.
Opt Express ; 30(7): 10850-10865, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473042

ABSTRACT

Since its first demonstration in graded-index multimode fibers, spatial beam self-cleaning has attracted a growing research interest. It allows for the propagation of beams with a bell-shaped spatial profile, thus enabling the use of multimode fibers for several applications, from biomedical imaging to high-power beam delivery. So far, beam self-cleaning has been experimentally studied under several different experimental conditions. Whereas it has been theoretically described as the irreversible energy transfer from high-order modes towards the fundamental mode, in analogy with a beam condensation mechanism. Here, we provide a comprehensive theoretical description of beam self-cleaning, by means of a semi-classical statistical mechanics model of wave thermalization. This approach is confirmed by an extensive experimental characterization, based on a holographic mode decomposition technique, employing laser pulses with temporal durations ranging from femtoseconds up to nanoseconds. An excellent agreement between theory and experiments is found, which demonstrates that beam self-cleaning can be fully described in terms of the basic conservation laws of statistical mechanics.

5.
Opt Lett ; 47(7): 1919, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363769

ABSTRACT

This publisher's note contains a correction to Opt. Lett.47, 1 (2022)10.1364/OL.445321.

6.
Opt Lett ; 47(1): 1-4, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34951867

ABSTRACT

We experimentally and numerically study the ignition of helical-shaped plasma filaments in standard optical fibers. Femtosecond pulses with megawatt peak power with proper off-axis and tilted coupling in the fiber core produce plasma skew rays. These last for distances as long as 1000 wavelengths thanks to a combination of linear waveguiding and the self-channeling effect. Peculiar is the case of graded-index multimode fibers; here the spatial self-imaging places constraints on the helix pitch. These results may find applications for fabricating fibers with helical-shaped core micro-structuration as well as for designing laser components and three-dimensional optical memories.

7.
Opt Lett ; 46(23): 5890-5893, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34851916

ABSTRACT

Fiber-based sources delivering high-energy few-cycle pulses at high repetition rates are currently being developed in the near-infrared spectral range, thanks to the wide availability of telecommunication-grade optical fibers and components. Similar sources in the middle-wave infrared (mid-IR) spectral domain, however, are scarce, although such sources are of high interest for applications such as high-precision frequency metrology and molecular spectroscopy or as a seed source to reach further into the mid-IR via coherent nonlinear processes. Here we report on the design of a fiber-based source of 50-nJ energy 90 fs duration pulses up to 2950 nm, corresponding to 500 kW peak power. To obtain this level of peak power we exploit multi-solitonic fission and soliton self-frequency shift in large mode area fibers excited by picosecond pulses emitted at 2 µm from a megahertz repetition rate fiber laser. We leverage mature silica-based fiber technology up to 2.4 µm and restrict the use of fluoride fiber to the very last frequency-shifting stage. The level of instantaneous power and ultra-short duration achieved in this Letter pave the way to all-fiber format generation of an ultra-broadband coherent continuum in the mid-IR with profound implications for applications such as high-resolution molecular spectroscopy and imaging.

8.
Opt Lett ; 46(15): 3717-3720, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329264

ABSTRACT

We present a new, to the best of our knowledge, spatial-spectral mapping technique permitting measurement of the beam intensity at the output of a graded-index multimode fiber (GIMF) with sub-nanometric spectral resolution. We apply this method to visualize the fine structure of the beam shape of a sideband generated at 1870 nm by geometric parametric instability (GPI) in a GIMF. After spatial-spectral characterization, we amplify the GPI sideband with a thulium-doped fiber amplifier to obtain a microjoule-scale picosecond pump whose spectrum is finally broadened in a segment of InF3 optical fiber to achieve a supercontinuum ranging from 1.7 up to 3.4 µm.

9.
Sci Rep ; 11(1): 13030, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158554

ABSTRACT

We demonstrate a new practical approach for generating multicolour spiral-shaped beams. It makes use of a standard silica optical fibre, combined with a tilted input laser beam. The resulting breaking of the fibre axial symmetry leads to the propagation of a helical beam. The associated output far-field has a spiral shape, independently of the input laser power value. Whereas, with a high-power near-infrared femtosecond laser, a visible supercontinuum spiral emission is generated. With appropriate control of the input laser coupling conditions, the colours of the spiral spatially self-organize in a rainbow distribution. Our method is independent of the laser source wavelength and polarization. Therefore, standard optical fibres may be used for generating spiral beams in many applications, ranging from communications to optical tweezers and quantum optics.

10.
Opt Express ; 29(8): 12625-12633, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33985016

ABSTRACT

Spatial self-imaging, consisting of the periodic replication of the optical transverse beam profile along the propagation direction, can be achieved in guided wave systems when all excited modes interfere in phase. We exploited material defects photoluminescence for directly visualizing self-imaging in a few-mode, nominal singlemode SMF-28 optical fiber. Visible luminescence was excited by intense femtosecond infrared pulses via multiphoton absorption processes. Our method permits us to determine the mode propagation constants and the cutoff wavelength of transverse fiber modes.

11.
Opt Lett ; 46(1): 66-69, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362017

ABSTRACT

Characterization of the complex spatiotemporal dynamics of optical beam propagation in nonlinear multimode fibers requires the development of advanced measurement methods, capable of capturing the real-time evolution of beam images. We present a new space-time mapping technique, permitting the direct detection, with picosecond temporal resolution, of the intensity from repetitive laser pulses over a grid of spatial samples from a magnified image of the output beam. By using this time-resolved mapping, we provide, to the best of our knowledge, the first unambiguous experimental observation of instantaneous intrapulse nonlinear coupling processes among the modes of a graded index fiber.

12.
Opt Express ; 28(10): 14333-14344, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403474

ABSTRACT

We experimentally demonstrate that spatial beam self-cleaning can be highly efficient when obtained with a few-mode excitation in graded-index multimode optical fibers. By using 160 ps long, highly chirped (6 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a one-decade reduction of the power threshold for spatial beam self-cleaning, with respect to previous experiments using pulses with laser wavelengths at 1030-1064 nm. Self-cleaned beams remain spatio-temporally stable for more than a decade of their peak power variation. The impact of input pulse temporal duration is also studied.

13.
Sci Rep ; 10(1): 7204, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32350305

ABSTRACT

We experimentally demonstrate the spatial self-cleaning of a highly multimode optical beam, in the process of second-harmonic generation in a quadratic nonlinear potassium titanyl phosphate crystal. As the beam energy grows larger, the output beam from the crystal evolves from a highly speckled intensity pattern into a single, bell-shaped spot, sitting on a low energy background. We demonstrate that quadratic beam cleanup is accompanied by significant self-focusing of the fundamental beam, for both positive and negative signs of the linear phase mismatch close to the phase-matching condition.

14.
Opt Express ; 27(17): 24018-24028, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510297

ABSTRACT

We experimentally demonstrate spatial beam self-cleaning and supercontinuum generation in a tapered Ytterbium-doped multimode optical fiber with parabolic core refractive index profile when 1064 nm pulsed beams propagate from wider (122 µm) into smaller (37 µm) diameter. In the passive mode, increasing the input beam peak power above 20 kW leads to a bell-shaped output beam profile. In the active configuration, gain from the pump laser diode permits to combine beam self-cleaning with supercontinuum generation between 520-2600 nm. By taper cut-back, we observed that the dissipative landscape, i.e., a non-monotonic variation of the average beam power along the MMF, leads to modal transitions of self-cleaned beams along the taper length.

15.
Opt Express ; 27(12): 17311-17321, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31252943

ABSTRACT

We report experimental results, showing that the Kerr beam self-cleaning of many low-order modes in a graded-index multimode fiber can be controlled thanks to optimized wavefront shaping of the coherent excitation beam. Adaptive profiling of the transverse input phase was utilized for channeling the launched power towards a specific low-order fiber mode, by exploiting nonlinear coupling among all guided modes. Experiments were carried out with 7 ps pulses at 1064 nm injected in a five meters long multimode fiber operating in the normal dispersion regime. Optimized Kerr beam self-cleaning of five different LP modes is reported, with a power threshold that increases with the mode order.

16.
Opt Lett ; 43(3): 587-590, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400847

ABSTRACT

We experimentally study the competition between Kerr beam self-cleaning and Raman beam cleanup in a multimode air-silica microstructure optical fiber. Kerr beam self-cleaning of the pump is observed for a certain range of input powers only. Stokes Raman beam generation and cleanup lead to both depletion and degradation of beam quality for the pump. The interplay of modal four-wave mixing and Raman scattering in the infrared domain leads to the generation of a multimode supercontinuum ranging from 500 nm up to 1800 nm.

17.
Opt Express ; 25(19): 22219-22227, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041536

ABSTRACT

We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber.

18.
Opt Lett ; 42(17): 3419-3422, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28957052

ABSTRACT

We report on the experimental observation of an intermodal noise-seeded modulational instability process (MI) taking place in the normal dispersion regime of a few-mode graded-index optical fiber. Strong power dependence of the MI spectra is observed, with a peak gain modulation frequency that scales as the square root of the injected light power. These observations are in excellent agreement with the predictions of a bimodal-MI model.

19.
Opt Lett ; 42(7): 1293-1296, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28362752

ABSTRACT

We demonstrate far-detuned parametric frequency conversion processes in a few mode graded-index optical fibers pumped by a Q-switched picosecond laser at 1064 nm. Through a detailed analytical and numerical analysis, we show that the multiple sidebands are generated through a complex cascaded process involving inter-modal four-wave mixing. The resulting parametric wavelength detuning spans in the visible down to 405 nm and in the near-infrared up to 1355 nm.

20.
Opt Express ; 25(5): 4783-4792, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380747

ABSTRACT

We experimentally demonstrate that Kerr spatial self-cleaning of a pulsed beam can be obtained in an amplifying multimode optical fiber. An input peak power of 500 W only was sufficient to produce a quasi-single-mode emission from the double-clad ytterbium doped multimode fiber (YMMF) with non-parabolic refractive index profile. We compare the self-cleaning behavior observed in the same fiber with loss and with gain. Laser gain introduces new opportunities to achieve spatial self-cleaning of light in multimode fibers at a relatively low power threshold.

SELECTION OF CITATIONS
SEARCH DETAIL
...