Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(20): 12890-12897, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28474024

ABSTRACT

Michaelis Menten catalysis by a T-photochromic system has been analyzed numerically. Using an appropriate set of rate constants and quantum yields, we have evidenced an enhanced photo-responsiveness at a medium light intensity: the plot of the initial rate vs. light intensity is bell-shaped. This emergent phenomenon can be qualified as hormetic catalysis. The analysis of the chemical flows shows that a directional rotation occurs within the cyclic scheme. Non equilibrium conditions are provided by two independent sources: the chemical energy dissipation from the irreversible exergonic reaction and the steady transformation of light into heat by T-photochromism. A literature survey, showing that most of the required kinetic features are not so rare, let us anticipate its practical feasibility.

2.
Phys Chem Chem Phys ; 16(41): 22775-83, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25238171

ABSTRACT

A photo-controlled and quasi-reversible switch of the luminescence of hexadecylamine-coated ZnO nanocrystals (ZnO@HDA Ncs) is operated via a molecular photoswitch (dithienylethene, DTE). The interaction between the DTE switch and the ZnO@HDA Ncs is thoroughly investigated using NMR spectroscopy techniques, including DOSY and NOESY, showing that the DTE switch is weakly adsorbed at the surface of the Ncs through the formation of hydrogen bonds with HDA. Steady state and time-resolved luminescence quenching experiments show a complex behavior, related to the spatial distribution of the emitting defects in the Ncs. Analysis of the data using models previously developed for Ncs supports static quenching. Both isomeric forms (open or closed) of the DTE switch quench the emission of Ncs, the efficiency being more than ten times higher for the closed isomer. The mechanism of quenching is discussed and we show that quenching occurs mainly through resonant energy transfer for the closed isomer and through electron transfer for the open one. The HDA layer mediates the quenching efficiency as only defects located near the surface are quenched.

3.
J Chem Phys ; 132(7): 074705, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20170242

ABSTRACT

The adsorption of indigo molecules on Cu(111) was investigated by low temperature (5 K) scanning tunneling microscopy from the isolated single molecule regime to one monolayer. Structural optimization and image calculations demonstrate that the molecules are in a physisorbed state. Because of the reduced symmetry at the surface, single molecules acquire a chiral character upon adsorption leading to a two-dimensional (2D) chirality. They adopt two adsorption configurations, related by a mirror symmetry of the substrate, each with a distinct molecular orientation. Consequently, the 2D chirality is expressed by the orientation of the molecule. For higher coverage, molecules self-assemble by hydrogen bonding in nearly homochiral molecular chains, whose orientation is determined by the orientation taken by the isolated molecules. When the coverage approaches one monolayer, these chains pack into domains. Finally, the completion of the monolayer induces the expulsion of the molecules of the wrong chirality that are still in these domains, leading to perfect resolution in enantiopure domains.

4.
Ultramicroscopy ; 107(10-11): 958-62, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17561347

ABSTRACT

We report the STM observation of single diarylethene derivatives (DD) embedded into alkylthiol self-assembled monolayers (SAM) on Au(111). Telegraph noise in the data shows that the molecular conductance oscillates between two states. Comparing our results to the ones obtained by other teams observing conductance flickering with systems in the same geometry, we relate the two observed states to the two isomeric configurations of the molecule under study.

5.
J Virol ; 69(2): 1339-43, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7815518

ABSTRACT

Traditionally, immunoglobulin A (IgA) was thought to neutralize virus by forming complexes with viral attachment proteins, blocking attachment of virions to host epithelial cells. Recently we have proposed an intracellular action for dimeric IgA, which is actively transported through epithelial cells by the polymeric immunoglobulin receptor (pIgR), in that it may be able to bind to newly synthesized viral proteins within the cell, preventing viral assembly. To this effect, we have previously demonstrated that IgA monoclonal antibodies against Sendai virus, a parainfluenza virus, colocalize with the viral hemagglutinin-neuraminidase protein within infected epithelial cells and reduce intracellular viral titers. Here we determine whether IgA can interact with influenza virus hemagglutinin (HA) protein within epithelial cells. Polarized monolayers of Madin-Darby canine kidney epithelial cells expressing the pIgR were infected on their apical surfaces with influenza virus A/Puerto Rico/8-Mount Sinai. Polymeric IgA anti-HA, but not IgG anti-HA, delivered to the basolateral surface colocalized with HA protein within the cell by immunofluorescence. Compared with those of controls, viral titers were reduced in the supernatants and cell lysates from monolayers treated with anti-HA IgA but not with anti-HA IgG. Furthermore, the addition of anti-IgA antibodies to supernatants did not interfere with the neutralizing activity of IgA placed in the basal chamber, indicating that IgA was acting within the cell and not in the extracellular medium to interrupt viral replication. Thus, these studies provide additional support for the concept that IgA can inhibit replication of microbial pathogens intracellularly.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Hemagglutinins, Viral/immunology , Immunoglobulin A/immunology , Influenza A virus/immunology , Animals , Cell Line , Dogs , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins, Viral/analysis , Immunoglobulin A/analysis , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...