Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 5(17): 8649-54, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23937323

ABSTRACT

We have synthesized water-dispersible cysteinate(2-)-capped CdSe nanocrystals and attached them to TiO2 using one-step linker-assisted assembly. Room-temperature syntheses yielded CdSe magic-sized clusters (MSCs) exhibiting a narrow and intense first excitonic absorption band centered at 422 nm. Syntheses at 80 °C yielded regular CdSe quantum dots (RQDs) with broader and red-shifted first excitonic absorption bands. Cysteinate(2-)-capped CdSe MSCs and RQDs adsorbed to bare nanocrystalline TiO2 films from aqueous dispersions. CdSe-functionalized TiO2 films were incorporated into working electrodes of quantum dot-sensitized solar cells (QDSSCs). Short-circuit photocurrent action spectra of QDSSCs corresponded closely to absorptance spectra of CdSe-functionalized TiO2 films. Power-conversion efficiencies were (0.43±0.04)% for MSC-functionalized TiO2 and (0.83±0.11)% for RQD-functionalized TiO2. Absorbed photon-to-current efficiencies under white-light illumination were approximately 0.3 for both MSC- and RQD-based QDSSCs, despite the significant differences in the electronic properties of MSCs and RQDs. Cysteinate(2-) is an attractive capping group and ligand, as it engenders water-dispersibility of CdSe nanocrystals with a range of photophysical properties, enables facile all-aqueous linker-assisted attachment of nanocrystals to TiO2, and promotes efficient interfacial charge transfer.


Subject(s)
Cysteine/chemistry , Quantum Dots/chemistry , Solar Energy , Titanium/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Semiconductors , Water/chemistry
2.
ACS Appl Mater Interfaces ; 3(11): 4242-53, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21970556

ABSTRACT

CdSe nanoparticles (NPs) capped with cysteinate (Cys), 3-mercaptopropionate (MP), and mercaptosuccinate (MS) were adsorbed to TiO(2) from basic aqueous dispersions. Native capping groups served as molecular linkers to TiO(2). Thus, the materials-assembly chemistry was simplified and made more reproducible and environmentally benign. The electronic properties of CdSe and the electron-transfer reactivity at CdSe-linker-TiO(2) interfaces varied with the structure and functionality of the capping groups. Cys-capped CdSe NPs exhibited a narrow and intense first excitonic absorption band centered at 422 nm, suggesting that they were magic-sized nanocrystals (MSCs) with diameters less than 2 nm. MP- and MS-capped CdSe NPs had broader and lower-energy absorption bands, which are typical of regular quantum dots. Photocurrent action spectra of nanocrystalline TiO(2) films functionalized with Cys-CdSe, MP-CdSe, and MS-CdSe overlaid closely with absorption spectra, indicating that excitation of CdSe gave rise to the injection of electrons into TiO(2). Under white-light illumination, the global energy-conversion efficiency for Cys-capped CdSe ((0.45 ± 0.11)%) was 1.2-to-6-fold greater than for MP- and MS-capped CdSe. Similarly, the absorbed photon-to-current efficiency was 1.3-to-3.3-fold greater. These differences arose from linker-dependent variations of electron-injection and charge-recombination reactivity. Transient absorption measurements indicated that electron injection from Cys-capped CdSe was more efficient than from MS-capped CdSe. In addition, charge recombination at CdSe-MS-TiO(2) interfaces was complete within hundreds of nanoseconds, whereas the charge-separated-state lifetime at CdSe-Cys-TiO(2) interfaces was on the order of several microseconds. Thus, Cys-capped CdSe MSCs are readily attached to TiO(2) and exhibit unusual electronic properties and desirable electron-transfer reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...