Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 657: 124183, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38692500

ABSTRACT

We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.


Subject(s)
Bone Neoplasms , Cell Survival , Doxorubicin , Micelles , Oligopeptides , Osteosarcoma , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Humans , Polyethylene Glycols/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/administration & dosage , Bone Neoplasms/drug therapy , Cell Survival/drug effects , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry
2.
Macromolecules ; 57(5): 2287-2294, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495388

ABSTRACT

The stereocomplexation of polylactide (PLA) has been widely relied upon to develop degradable, sustainable materials with increased strength and improved material properties in comparison to stereopure PLA. However, forming functionalized copolymers of PLA while retaining high crystallinity remains elusive. Herein, the controlled ring-opening copolymerization (ROCOP) of lactide (LA) and functionalized cyclic carbonate monomers is undertaken. The produced polymers are shown to remain crystalline up to 25 mol % carbonate content and are efficiently stereocomplexed with homopolymer PLA and copolymers of opposite chirality. Polymers with alkene and alkyne pendent handles are shown to undergo efficient derivatization with thiol-ene click chemistry, which would allow both the covalent conjugation of therapeutic moieties and tuning of material properties.

3.
Commun Chem ; 6(1): 235, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898680

ABSTRACT

Alternating copolymers are distinctly unique in comparison with other copolymers. Herein, an in-depth investigation of the oxyanionic ring-opening copolymerization of propylene oxide (PO) and allyl glycidyl ether (AGE) from benzyl alcohol (BnOH) activated with potassium acetate (KOAc) complexed by 18-crown-6 ether (18C6) is described. We demonstrate that the 18C6/KOAc complex is an efficient and benign catalytic system to promote copolymerization of both oxirane monomers, leading to well-defined polyethers with varied comonomer content and low dispersity values (ƉM < 1.20). Kinetic analysis confirmed the controlled nature of the (co)polymerization process, and the determination of reactivity ratios revealed a quasi-alternating copolymerization profile, according to the Fineman-Ross method. The comparison between the quasi-alternating-type PO/AGE copolymerization and block or gradient copolymerization revealed significant differences, to confirm the different sequence incorporation in the different topological copolymers. These results highlight the great potential of 18C6/KOAc-mediated copolymerization process for the controlled sythesis of a series of copolymer topologies.

4.
ACS Macro Lett ; 11(9): 1148-1155, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36067070

ABSTRACT

Stereochemical control during polymerization is a key strategy of polymer chemistry to achieve semicrystalline engineered plastics. The stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA), which can lead to highly isotactic polylactide (PLA), is one of the emblematic examples in this area. Surprisingly, stereoselective ROP of rac-LA employing chiral organocatalysts has been under-leveraged. Here we show that a commercially available chiral thiourea (TU1), or its urea homologue (U1), can be used in conjunction with an appropriately selected N-heterocyclic carbene (NHC) to trigger the stereoselective ROP of rac-LA at room temperature in toluene. Both a high organic catalysis activity (>90% monomer conversion in 5-9 h) and a high stereoselectivity (probability of formation of meso dyads, Pm, in the range 0.82-0.93) can be achieved by thus pairing a NHC and a chiral amino(thio)urea. The less sterically hindered and the more basic NHC, that is, a NHC bearing tert-butyl substituents (NHCtBu), provides the highest stereoselectivity when employed in conjunction with the chiral TU1 or U1. This asymmetric organic catalysis strategy, as applied here in polymerization chemistry, further expands the field of possibilities to achieve bioplastics with adapted thermomechanical properties.


Subject(s)
Polyesters , Urea , Dioxanes , Methane/analogs & derivatives , Plastics , Polyesters/chemistry , Polymerization , Stereoisomerism , Thiourea , Toluene
5.
Biomater Adv ; 140: 213043, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35914327

ABSTRACT

A novel star-shaped amphiphilic copolymer based on three poly(lactide)-block-poly(ethylene glycol) (PLA-PEG) terminal arms extending from a glycerol multifunctional core was newly synthesized and decorated with the tumor-targeting ligand cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys) to be eventually formulated in polymeric micelles incorporating a suitable anticancer drug (i.e., Docetaxel, DTX; drug loading 16 %, encapsulation efficiency 69 %). The biological profile of unloaded micelles (RGD-NanoStar) was studied on Human Adipose-derived Mesenchymal Stem Cells (Ad-MSCs) as health control, pointing out the absence of toxicity. Surprisingly, an unprecedented effect on cell viability was exerted by RGD-NanoStar, comparable to that of the free DTX, on tumoral MDA-MB 468 Human Breast Adenocarcinoma cells, specifically starting from 48 h of culture (about 40 % and 60 % of dead cells at 48 and 72 h, respectively, at all tested concentrations). RGD-NanoStar reduced the cell viability also of tumoral U87 Human Glioblastoma cells, compared to cells only, at 72 h (about 25 % of dead cells) demonstrating a time-dependent effect exerted by the highest concentrations. The effects of DTX-loaded micelles (RGD-NanoStar/DTX) on U87 and MDA-MB 468 cell lines were evaluated by MTT, cell morphology analysis, and scratch test. A compromised cell morphology was observed without significant difference between DTX-treated and RGD-NanoStar/DTX - treated cells, especially in U87 cell line. Although no apparent benefit emerged from the drug incorporation into the nanosystem by MTT assay, the scratch test revealed a statistically significant inhibition of tumoral cell migration on both cell lines, confirming the well-known role of DTX in inhibiting cell movements even when loaded on polymeric micelles. Specifically, only 43 µm distance was covered by U87 cells after 30 h culture with RGD-NanoStar/DTX (30 µg/mL) compared to 73 µm in the presence of free DTX at the same concentration; more interestingly, a total absence of MDA-MB 468 cell movements was detected at 30 h compared to about 50 µm distance covered by cells in the presence of free DTX (10 µg/mL). The stronger inhibitory activity on cell migration of RGD-NanoStar/DTX compared to the free drug in both cell lines at 30 h attested for a good ability of the drug-loaded nanocarrier to reduce tumor propagation and invasiveness, enhancing the typical effect of DTX on metastatization.


Subject(s)
Micelles , Oligopeptides , Cell Line, Tumor , Docetaxel/pharmacology , Humans , Oligopeptides/pharmacology , Polyesters , Polyethylene Glycols , Polymers
6.
Macromol Rapid Commun ; 43(20): e2200424, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35686832

ABSTRACT

The oxyanionic ring-opening polymerization of propylene oxide (PO) from an exogenous alcohol activated with benign (complexed) metal-alkali carboxylates is described. The equimolar mixture of potassium acetate (KOAc) and 18-crown-6 ether (18C6) is demonstrated to be the complex of choice for preparing poly(propylene oxide) (PPO) in a controlled manner. In the presence of 18C6/KOAc, hydrogen-bonded alcohols act as soft nucleophiles promoting the PO SN 2 process at room temperature and in solvent-free conditions while drastically limiting the occurrence of parasitic hydrogen abstraction generally observed during the anionic ROP of PO. The resulting PPO displays predictable and unprecedented molar masses (up to 20 kg mol-1 ) with low dispersities (DM < 1.1), rendering the 18C6/KOAc complex the most performing activator for the oxyanionic polymerization of PO reported to date. Preliminary studies on the preparation of block and statistical copolyethers are also reported.


Subject(s)
Epoxy Compounds , Potassium Acetate , Polymerization , Catalysis , Hydrogen , Alkalies
7.
Biomacromolecules ; 23(3): 1138-1147, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35041390

ABSTRACT

Although N-(S)-phenylethyl peptoids are known to adopt helical structures in solutions, the corresponding positively charged ions lose their helical structure during the transfer from the solution to the gas phase due to the so-called charge solvation effect. We, here, considered negatively charged peptoids to investigate by ion mobility spectrometry-mass spectrometry whether the structural changes described in the positive ionization mode can be circumvented in the negative mode by a fine-tuning of the peptoid sequence, that is, by positioning the negative charge at the positive side of the helical peptoid macrodipole. N-(S)-(1-carboxy-2-phenylethyl) (Nscp) and N-(S)-phenylethyl (Nspe) were selected as the negative charge carrier and as the helix inductor, respectively. We, here, report the results of a joint theoretical and experimental study demonstrating that the structures adopted by the NspenNscp anions remain compactly folded in the gas phase for chains containing up to 10 residues, whereas no evidence of the presence of a helical structure was obtained, even if, for selected sequences and lengths, different gas phase conformations are detected.


Subject(s)
Peptoids , Anions , Ion Mobility Spectrometry , Ions , Molecular Conformation , Peptoids/chemistry
8.
Biomacromolecules ; 22(8): 3543-3551, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34251172

ABSTRACT

Folding and unfolding processes are key aspects that should be mastered for the design of foldamer molecules for targeted applications. In contrast to the solution phase, in vacuo conditions represent a well-defined environment to analyze the intramolecular interactions that largely control the folding/unfolding dynamics. Ion mobility mass spectrometry coupled to theoretical modeling represents an efficient method to decipher the spatial structures of gaseous ions, including foldamers. However, charge solvation typically compacts the ion structure in the absence of strong stabilizing secondary interactions. This is the case in peptoids that are synthetic peptide regioisomers whose side chains are connected to the nitrogen atoms of the backbone instead of α-carbon as in peptides, thus implying the absence of H-bonds among the core units of the backbone. A recent work indeed reported that helical peptoids based on Nspe units formed in solution do not retain their secondary structure when transferred to the gas phase upon electrospray ionization (ESI). In this context, we demonstrate here that the helical structure of peptoids bearing (S)-N-(1-carboxy-2-phenylethyl) bulky side chains (Nscp) is largely preserved in the gas phase by the creation of a hydrogen bond network, induced by the presence of carboxylic moieties, that compensates for the charge solvation process.


Subject(s)
Peptoids , Gases , Hydrogen Bonding , Ions , Protein Structure, Secondary
9.
Int J Biol Macromol ; 186: 255-267, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34246673

ABSTRACT

Polylactide is one of the most versatile biopolymers, but its slow crystallization limits its temperature usage range. Hence finding ways to enhance it is crucial to widen its applications. Linear and cyclic poly (L-lactide) (l-PLLA and c-PLLA) of similarly low molecular weights (MW) were synthesized by ring-opening polymerization of L-lactide, and ring-expansion methodology, respectively. Two types of blends were prepared by solution mixing: (a) l-PLLA/c-PLLA, at extreme compositions (rich in linear or in cyclic chains), and (b) blends of each of these low MW materials with a commercial high MW linear PLA. The crystallization of the different blends was evaluated by polarized light optical microscopy and differential scanning calorimetry. It was found, for the first time, that in the l-PLLA rich blends, small amounts of c-PLLA (i.e., 5 and 10 wt%) increase the nucleation density, nucleation rate (1/τ0), spherulitic growth rate (G), and overall crystallization rate (1/τ50%), when compared to neat l-PLLA, due to a synergistic effect (i.e., nucleation plus plasticization). In contrast, the opposite effect was found in the c-PLLA rich blends. The addition of small amounts of l-PLLA to a matrix of c-PLLA chains causes a decrease in the nucleation density, 1/τ0, G, and 1/τ50% values, due to threading effects between cyclic and linear chains. Small amounts of l-PLLA and c-PLLA enhance the crystallization ability of a commercial high MW linear PLA without affecting its melting temperature. The l-PLLA only acts as a plasticizer for the PLA matrix, whereas c-PLLA has a synergistic effect in accelerating the crystallization of PLA that goes beyond simple plasticization. The addition of small amounts of c-PLLA affects not only PLA crystal growth but also its nucleation due to the unique cyclic chains topology.


Subject(s)
Plasticizers/chemistry , Polyesters/chemistry , Crystallization , Kinetics , Models, Molecular , Molecular Conformation , Molecular Weight , Temperature
10.
Chem Commun (Camb) ; 57(31): 3777-3780, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33734228

ABSTRACT

Control of stereoregularity is inherent to precision polymerization chemistry for the development of functional materials. A prototypal example of this strategy is the ring-opening polymerization (ROP) of racemic lactide (rac-LA), a bio-sourced monomer. Despite significant advances in organocatalysis, stereoselective ROP of rac-LA employing chiral organocatalysts remains unexplored. Here we tackle that challenge by resorting to Takemoto's catalyst, a chiral aminothiourea, in the presence of a phosphazene base. This chiral binary organocatalytic system allows for fast, chemo- and stereoselective ROP of rac-LA at room temperature, yielding highly isotactic, semi-crystalline and metal-free polylactide, with a melting temperature as high as 187 °C.

11.
Macromolecules ; 54(13): 6214-6225, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35693113

ABSTRACT

Polylactide (PLA) has emerged as one of the most promising bio-based alternatives to petroleum-based plastics, mainly because it can be produced from the fermentation of naturally occurring sugars and because it can be industrially compostable. In spite of these benefits, the industrial ring-opening polymerization (ROP) of l-lactide (L-LA) still requires the use of highly active and thermally stable metal-based catalysts, which have raised some environmental concerns. While the excellent balance between activity and functional group compatibility of organic acid catalysts makes them some of the most suitable catalysts for the metal-free ROP of L-LA, the majority of these acids are highly volatile and subject to decomposition at high temperature, which limits their use under industrially relevant conditions. In this work we exploit the use of a nonstoichiometric acid-base organocatalyst to promote the solvent-free and metal-free ROP of L-LA at elevated temperatures in the absence of epimerization and transesterification. To do so, a stable acidic complex was prepared by mixing 4-(dimethylamino)pyridine (DMAP) with 2 equiv of methanesulfonic acid (MSA). Both experimental and computational results indicate that DMAP:MSA (1:2) not only is highly thermally stable but also promotes the retention of stereoregularity during the polymerization of L-LA, leading to PLLA with a molar mass of up to 40 kg mol-1 and a chiral purity in excess of 98%. This result provides a new feature to exploit in organocatalyzed polymerization and in the design of new catalysts to facilitate the path to market.

12.
Macromol Rapid Commun ; 42(3): e2000378, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32909337

ABSTRACT

The synthesis of well-defined propargyl-functional aliphatic polycarbonates is achieved via the organocatalytic ring-opening polymerization of prop-2-yn-1-yl 2-oxo-1,3,6-dioxazocane-6-carboxylate (P-8NC) using a wide variety of commercially available or readily made, shelf-stable organocatalysts. The resulting homopolymers show low dispersities and end-group fidelity, with the versatility of the system being demonstrated by the synthesis of telechelic copolymers and block copolymers with molar mass up to 40 kDa.


Subject(s)
Alkynes , Polycarboxylate Cement , Carbonates , Polymerization
13.
J Am Soc Mass Spectrom ; 31(11): 2379-2388, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33044069

ABSTRACT

Synthetic polymers occupy a unique place in the field of ion mobility mass spectrometry (IMS-MS). Indeed, due to their intrinsic dispersity, they have the asset to offer a broad range of homologous ions with different lengths that can be detected in several charge states. In addition, the gas-phase structure of polymer ions mostly depends on their ability to screen the adducted charges. Several works dealing with linear, cyclic, and star-shaped polymers have already shown that the gas-phase structure of polymer ions heavily relies on the polymer architecture, i.e., the primary structure. In the present work, we move a step further by evaluating whether a relationship exists between the primary and secondary structures of synthetic homo and copolymers. The IMS-MS experiments will be further complemented by MD simulations. To highlight the effectiveness of IMS separation, we selected isomeric homo and copolymers made of lactide (LA) and propiolactone (PL) units. In this way, the mass analysis becomes useless since isomeric comonomer sequences can coexist for any given chain length. An UPLC method was implemented in the workflow to successfully separate all PL-LA comonomer sequences before infusion in the IMS-MS instrument. The analysis of doubly charged copolymers showed that the comonomer sequence has an impact on the IMS response. However, this only holds for copolymer ions with precise sizes and charge states, and this is therefore not a rule of thumb.

14.
Mater Sci Eng C Mater Biol Appl ; 117: 111291, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32919652

ABSTRACT

We report the synthesis, characterization and biological profile of new bis-triazoled cyclopolylactides (c-PLA, c-PLA-FA, c-PLA-Rhod) obtained by an optimized combination of ROP and click chemistry reactions. Cyclo-PLA having a number average molecular weight of 6000 g mol-1 and a polydispersity index of 1.52 was synthetized by click ring-closure of well-defined α,ω-heterodifunctional linear precursors, followed by quaternarization of N3-triazole nodes, and subsequent CuAAC with azido-folate and azido-rhodamine yielding jellyfish-shaped c-PLA-FA and c-PLA-Rhod. Salinomycin (Sal) was loaded into jellyfish-shaped c-PLA-FA and c-PLA-Rhod nanoparticles (NPs) by nanoprecipitation, with a good encapsulation efficiency (79% and 84%, respectively) and loading content (7.1% and 7.6%, respectively). The biological studies focused on their antiproliferative effects on osteosarcoma bulk MG63 and cancer stem cells (CSCs). The cycloPLA-based NPs, with a size ranging between 125 and 385 nm, killed CSCs and MG63, with a higher efficacy on CSCs; they (unloaded or Sal-loaded) evoked on CSCs a cellular response similar to the payload, with a higher effect than the free Sal. Internalization studies indicated a fast cellular uptake (within 2 h) and sarcospheres remained fluorescent till 72 h. To the best of our knowledge, this is the first study reporting anti-CSCs properties of cycloPLA with jellyfish architecture and we believe could contribute to the development of effective strategies for osteosarcoma targeting.


Subject(s)
Bone Neoplasms , Nanoparticles , Osteosarcoma , Cell Line, Tumor , Folic Acid , Humans , Neoplastic Stem Cells , Osteosarcoma/drug therapy , Polyethylene Glycols
15.
ACS Appl Mater Interfaces ; 12(41): 46621-46628, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32940451

ABSTRACT

Poly(2-methoxyethyl acrylate) (PMEA) has attracted attention as a biocompatible polymer that is used as an antithrombotic coating agent for medical devices, such as during artificial heart and lung fabrication. However, PMEA is a viscous liquid polymer with low Tg, and its physical strength is poor even if a cross-linker is used, so it is difficult to make tough and freestanding objects from it. Here, we design and fabricate a biocompatible elastomer made of tough, self-supporting PMEA-silica composites. The toughness of the composite elastomer increases as a function of silica particle filling, and its stress at break is improved from 0.3 to 6.7 MPa. The fracture energy of the composite elastomer with 39.5 vol % silica particles is up to 15 times higher than that of the cross-linked PMEA with no silica particles and the material demonstrates stress-strain behavior that is similar to that of biological soft tissue, which exhibits nonlinear elasticity. In addition, the composite elastomer shows the potential to be an antithrombotic property, while the results of the platelet adhesion test of the composite elastomer show that the number of adhered platelets is not significantly affected by the silica addition. As the composite elastomer can be rapidly three-dimensional-printed into complex geometries with high-resolution features, it is expected to contribute to the development of medical devices from readily available materials.


Subject(s)
Acrylates/chemistry , Elastomers/chemistry , Polymers/chemistry , Printing, Three-Dimensional , Silicon Dioxide/chemistry , Adsorption , Humans , Molecular Structure , Particle Size , Platelet Adhesiveness , Surface Properties
16.
Polymers (Basel) ; 12(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751402

ABSTRACT

Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.

17.
ChemSusChem ; 13(3): 469-487, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31769174

ABSTRACT

The utilization of carbon dioxide as a comonomer to produce polycarbonates has attracted a great deal of attention from both industrial and academic communities because it promises to replace petroleum-derived plastics and supports a sustainable environment. Significant progress in the copolymerization of cyclic ethers (e.g., epoxide, oxetane) and carbon dioxide has been made in recent decades, owing to the rapid development of catalysts. In this Review, the focus is to summarize and discuss recent advances in the development of homogeneous catalysts, including metal- and organo-based complexes, as well as the preparation of carbon dioxide-based block copolymer and functional polycarbonates.

18.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8660, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31732989

ABSTRACT

Since their discovery, cyclic polymers have attracted great interest because of their unique properties. Today, the preparation of these macrocyclic structures still remains a challenge for polymer chemists, and most of the preparation pathways lead to an inescapable contamination by linear by-products. As the properties of the polymers are closely related to their structure, it is of prime importance to be able to assess the architectural purity of a sample. METHODS: In this work, the suitability of ion mobility spectrometry-mass spectrometry (IMS-MS) for the quantification of two isomers was investigated. A cyclic poly(L-lactide) was prepared through photodimerization of its linear homologue. Since IMS-MS can be used to differentiate cyclic polymer ions from their linear analogues because of their more compact three-dimensional conformation, the present work envisaged the use of IMS-MS for the quantification of residual linear polymers within the cyclic polymer sample. RESULTS: Using the standard addition method to plot calibration curves, the fraction of linear contaminants in the sample was determined. By doing so, unrealistically high values of contamination were measured. CONCLUSIONS: These results were explained by an ionization efficiency issue. This work underlines some intrinsic limitations when using IMS-MS in the context of the relative quantification of isomers having different ionization efficiencies. Nevertheless, the linear-to-cyclic ratio can be roughly estimated by this method.

19.
Materials (Basel) ; 13(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861398

ABSTRACT

In this study, a highly efficient flame-retardant bioplastic poly(lactide) was developed by covalently incorporating flame-retardant DOPO, that is, 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide. To that end, a three-step strategy that combines the catalyzed ring-opening polymerization (ROP) of L,L-lactide (L,L-LA) in bulk from a pre-synthesized DOPO-diamine initiator, followed by bulk chain-coupling reaction by reactive extrusion of the so-obtained phosphorylated polylactide (PLA) oligomers (DOPO-PLA) with hexamethylene diisocyanate (HDI), is described. The flame retardancy of the phosphorylated PLA (DOPO-PLA-PU) was investigated by mass loss cone calorimetry and UL-94 tests. As compared with a commercially available PLA matrix, phosphorylated PLA shows superior flame-retardant properties, that is, (i) significant reduction of both the peak of heat release rate (pHRR) and total heat release (THR) by 35% and 36%, respectively, and (ii) V0 classification at UL-94 test. Comparisons between simple physical DOPO-diamine/PLA blends and a DOPO-PLA-PU material were also performed. The results evidenced the superior flame-retardant behavior of phosphorylated PLA obtained by a reactive pathway.

20.
Polymers (Basel) ; 11(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810223

ABSTRACT

Reactive extrusion and magnesium (II) N-heterocyclic carbene catalyst are successfully employed in continuous polylactide synthesis. The possibility of using six-membered N-heterocyclic carbene adducts to act as efficient catalysts towards the sustainable synthesis of poly(l-lactide) through ring-opening polymerization of l-lactide (LA) is first investigated in bulk batch reactions. Under optimized solvent-free conditions, polylactide (PLA) of moderate to high molecular weights and excellent optical activities are successfully achieved. These promising results are further applied in the continuous production of PLA in an extruder.

SELECTION OF CITATIONS
SEARCH DETAIL
...