Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 103(6): 2542-2551, 2020 12.
Article in English | MEDLINE | ID: mdl-33146105

ABSTRACT

Small mammals are the natural reservoirs for many zoonotic pathogens. Using molecular tools, we assessed the prevalence of bacteria and protozoans in small mammals and their ectoparasites in Faladjè, Bougouni, and Bamoko, Mali. A total of 130 small mammals belonging to 10 different species were captured, of which 74 (56.9%) were infested by ectoparasites, including Laelaps echidnina, Xenopsylla cheopis, Amblyomma variegatum, Rhipicephalus sanguineus sensu lato, and Haemaphysalis spp. nymphs. DNA of Bartonella was found in 14/75 (18.7%), 6/48 (12.5%), and 3/7 (42.8%) small mammals from Faladjè, Bougouni, and Bamako, respectively. In Faladjè, Bartonella DNA was detected in 31/68 (45.6%) of L. echidnina and 14/22 (63.6%) of X. cheopis. In Bougouni, it was found in 2/26 (7.7%) of L. echidnina and 10/42 (23.8%) of X. cheopis. The sequences of Bartonella obtained from small mammals were close to those of Bartonella mastomydis, Bartonella elizabethae, and uncultured Bartonella spp. In Faladjè, Coxiella burnetii DNA was detected in 64.4% (29/45) of Haemaphysalis spp. ticks, 4.5% (2/44) of Mastomys erythroleucus, 12.5% (1/8) of Praomys daltoni, and 1.5% (1/68) of L. echidnina. We found DNA of Wolbachia in X. cheopis from Faladjè and DNA of Rickettsia africae and Ehrlichia ruminantium in Am. variegatum from Bougouni. The results of our study show that several small mammal species harbor and may serve as potential reservoirs of Bartonella spp., likely to play a major role in the maintenance, circulation, and potential transmission of bacteria in Mali. The pathogenicity of these bacteria for humans or animals remains to be demonstrated.


Subject(s)
Ectoparasitic Infestations/veterinary , Rodent Diseases/parasitology , Animals , Bacteria/isolation & purification , Disease Reservoirs , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology , Mali/epidemiology , Mites/microbiology , Phylogeny , Rodent Diseases/epidemiology , Rodentia , Siphonaptera/microbiology , Ticks/microbiology , Zoonoses
2.
Am J Trop Med Hyg ; 93(4): 790-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26324728

ABSTRACT

Heterogeneity in malaria exposure is most readily recognized in areas with low-transmission patterns. By comparison, little research has been done on spatial patterns in malaria exposure in high-endemic settings. We determined the spatial clustering of clinical malaria incidence, asymptomatic parasite carriage, and Anopheles density in two villages in Mali exposed to low- and mesoendemic-malaria transmission. In the two study areas that were < 1 km(2) in size, we observed evidence for spatial clustering of Anopheles densities or malaria parasite carriage during the dry season. Anopheles density and malaria prevalence appeared associated in some of our detected hotspots. However, many households with high parasite prevalence or high Anopheles densities were located outside the identified hotspots. Our findings indicate that within small villages exposed to low- or mesoendemic-malaria transmission, spatial patterns in mosquito densities and parasite carriage are best detected in the dry season. Considering the high prevalence of parasite carriage outside detected hotspots, the suitability of the area for targeting control efforts to households or areas of more intense malaria transmission may be limited.


Subject(s)
Anopheles , Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Animals , Carrier State/epidemiology , Carrier State/parasitology , Incidence , Mali/epidemiology , Population Density , Prevalence , Seasons , Spatial Analysis
3.
Parasit Vectors ; 5: 89, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22564488

ABSTRACT

BACKGROUND: Recent data from Ghana indicates that after seven rounds of annual mass drug administration (MDA) there is still sustained transmission albeit at low levels in certain areas where Anopheles melas, An. gambiae s.s., Mansonia and Culex species are the main biting mosquitoes. Anopheles gambiae s.l. and An. funestus are the known vectors in Ghana and a recent report indicated that An. melas could transmit at low level microfilaraemia. However, because An. melas is not found everywhere there was the need to determine whether any of the other culicine species could also be playing a role in the transmission of LF. METHODS: Indoor mosquitoes collected once a month for three months using pyrethrum spray catches in six communities within the Kommenda-Edina-Eguafo-Abirem (KEEA) District, Central Region of Ghana were morphologically identified, dissected and examined for the presence of W. bancrofti. Additionally, stored mosquito samples collected during previous years in 8 communities from the Gomoa District also in the Central Region were similarly processed. The identities of all W. bancrofti parasites found were confirmed using an established PCR method. RESULTS: A total of 825 indoor resting mosquitoes comprising of 501 Anopheles species, 239 Mansonia species, 84 Culex species and 1 Aedes species were dissected and examined for the presence of W. bancrofti. Mansonia africana had infection and infectivity rates of 2.5%. and 2.1% respectively. Anopheles gambiae s.l. had an infection rate of 0.4% and a similar infectivity rate. None of the Culex sp. and Aedes sp were found with infection. From the stored mosquitoes the infection and infectivity rates for M. africana were 7.6% (N=144) and 2.8% respectively whilst the corresponding rates for M. uniformis were 2.9% (N=244) and 0.8%. CONCLUSIONS: This is the first report of Mansonia species as vectors of lymphatic filariasis (LF) in Ghana and in West Africa since that of 1958 in Guinea. The revelation of a hitherto unrecognised vector which is possibly more efficient in transmission than the recognised ones has a profound implication for elimination of lymphatic filariasis programmes in the sub-region.


Subject(s)
Elephantiasis, Filarial/transmission , Insect Vectors/parasitology , Malvaceae/parasitology , Wuchereria bancrofti , Animals , Elephantiasis, Filarial/epidemiology , Ghana/epidemiology , Humans , Insect Vectors/physiology , Malvaceae/classification , Malvaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...