Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 131(13)2018 07 09.
Article in English | MEDLINE | ID: mdl-29898920

ABSTRACT

The formation of complex dendritic arbors is crucial for the assembly of functional networks as abnormal dendrite formation underlies several neurodevelopmental and psychiatric disorders. Many extracellular factors have been postulated as regulators of dendritic growth. Wnt proteins play a critical role in neuronal development and circuit formation. We previously demonstrated that Wnt7b acts through the scaffold protein dishevelled 1 (Dvl1) to modulate dendrite arborisation by activating a non-canonical Wnt signalling pathway. Here, we identify the seven-transmembrane frizzled-7 (Fz7, also known as FZD7) as the receptor for Wnt7b-mediated dendrite growth and complexity. Importantly, Fz7 is developmentally regulated in the intact hippocampus, and is localised along neurites and at dendritic growth cones, suggesting a role in dendrite formation and maturation. Fz7 loss-of-function studies demonstrated that Wnt7b requires Fz7 to promote dendritic arborisation. Moreover, in vivo Fz7 loss of function results in dendritic defects in the intact mouse hippocampus. Furthermore, our findings reveal that Wnt7b and Fz7 induce the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and JNK proteins, which are required for dendritic development. Here, we demonstrate that Wnt7b-Fz7 signals through two non-canonical Wnt pathways to modulate dendritic growth and complexity.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dendrites/metabolism , Hippocampus/growth & development , MAP Kinase Kinase 4/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Wnt Proteins/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Dendrites/enzymology , Dendrites/genetics , Dishevelled Proteins/genetics , Dishevelled Proteins/metabolism , Frizzled Receptors , Hippocampus/metabolism , MAP Kinase Kinase 4/genetics , Mice , Mice, Inbred C57BL , Neurites/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway
2.
Neurotoxicology ; 52: 150-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26688330

ABSTRACT

The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.


Subject(s)
Axons/drug effects , Glycine/analogs & derivatives , Hippocampus/pathology , Neurogenesis/drug effects , Wnt Signaling Pathway/drug effects , Wnt-5a Protein/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Glycine/toxicity , Growth Cones/drug effects , Growth Cones/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Rats , Wnt-5a Protein/biosynthesis , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...