Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(1): 774-781, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38156904

ABSTRACT

SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.


Subject(s)
Furans , Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Quinazolines , X-Rays , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Cell Line , SOS1 Protein/metabolism
2.
ACS Med Chem Lett ; 7(8): 797-801, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27563405

ABSTRACT

Optimization of pyridine-based noncatalytic site integrase inhibitors (NCINIs) based on compound 2 has led to the discovery of molecules capable of inhibiting virus harboring N124 variants of HIV integrase (IN) while maintaining minimal contribution of enterohepatic recirculation to clearance in rat. Structure-activity relationships at the C6 position established chemical space where the extent of enterohepatic recirculation in the rat is minimized. Desymmetrization of the C4 substituent allowed for potency optimization against virus having the N124 variant of integrase. Combination of these lessons led to the discovery of compound 20, having balanced serum-shifted antiviral potency and minimized excretion in to the biliary tract in rat, potentially representing a clinically viable starting point for a new treatment option for individuals infected with HIV.

3.
ACS Med Chem Lett ; 5(4): 422-7, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24900852

ABSTRACT

An assay recapitulating the 3' processing activity of HIV-1 integrase (IN) was used to screen the Boehringer Ingelheim compound collection. Hit-to-lead and lead optimization beginning with compound 1 established the importance of the C3 and C4 substituent to antiviral potency against viruses with different aa124/aa125 variants of IN. The importance of the C7 position on the serum shifted potency was established. Introduction of a quinoline substituent at the C4 position provided a balance of potency and metabolic stability. Combination of these findings ultimately led to the discovery of compound 26 (BI 224436), the first NCINI to advance into a phase Ia clinical trial.

4.
ACS Med Chem Lett ; 5(6): 711-6, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24944749

ABSTRACT

A scaffold replacement approach was used to identifying the pyridine series of noncatalytic site integrase inhibitors. These molecules bind with higher affinity to a tetrameric form compared to a dimeric form of integrase. Optimization of the C6 and C4 positions revealed that viruses harboring T124 or A124 amino acid substitutions are highly susceptible to these inhibitors, but viruses having the N124 amino acid substitution are about 100-fold less susceptible. Compound 20 had EC50 values <10 nM against viruses having T124 or A124 substitutions in IN and >800 nM in viruses having N124 substitions. Compound 20 had an excellent in vitro ADME profile and demonstrated reduced contribution of biliary excretion to in vivo clearance compared to BI 224436, the lead compound from the quinoline series of NCINIs.

5.
Antimicrob Agents Chemother ; 58(6): 3233-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24663024

ABSTRACT

BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 µM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Subject(s)
HIV Integrase Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Amino Acid Substitution/genetics , Amino Acid Substitution/physiology , Animals , Anti-HIV Agents/pharmacology , Caco-2 Cells , Cloning, Molecular , Cytochrome P-450 Enzyme Inhibitors/pharmacology , DNA, Viral/drug effects , Drug Resistance, Viral , HIV Integrase/biosynthesis , HIV Integrase/genetics , HIV Integrase/metabolism , HIV Integrase Inhibitors/metabolism , HIV Integrase Inhibitors/pharmacokinetics , Hepatocytes/metabolism , Humans , Mice , Rats , Serum/virology , Virus Replication/drug effects
6.
J Med Chem ; 57(5): 2074-90, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24467709

ABSTRACT

Future treatments for individuals infected by the hepatitis C virus (HCV) will likely involve combinations of compounds that inhibit multiple viral targets. The helicase of HCV is an attractive target with no known drug candidates in clinical trials. Herein we describe an integrated strategy for identifying fragment inhibitors using structural and biophysical techniques. Based on an X-ray structure of apo HCV helicase and in silico and bioinformatic analyses of HCV variants, we identified that one site in particular (labeled 3 + 4) was the most conserved and attractive pocket to target for a drug discovery campaign. Compounds from multiple sources were screened to identify inhibitors or binders to this site, and enzymatic and biophysical assays (NMR and SPR) were used to triage the most promising ligands for 3D structure determination by X-ray crystallography. Medicinal chemistry and biophysical evaluations focused on exploring the most promising lead series. The strategies employed here can have general utility in drug discovery.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , RNA Helicases/antagonists & inhibitors , Serine Endopeptidases , Structure-Activity Relationship , Surface Plasmon Resonance
7.
J Med Chem ; 57(5): 1845-54, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24159919

ABSTRACT

Conformational restrictions of flexible torsion angles were used to guide the identification of new chemotypes of HCV NS5B inhibitors. Sites for rigidification were based on an acquired conformational understanding of compound binding requirements and the roles of substituents in the free and bound states. Chemical bioisosteres of amide bonds were explored to improve cell-based potency. Examples are shown, including the design concept that led to the discovery of the phase III clinical candidate deleobuvir (BI 207127). The structure-based strategies employed have general utility in drug design.


Subject(s)
Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Benzimidazoles/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Indoles/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
8.
J Med Chem ; 57(5): 1944-51, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24024973

ABSTRACT

An anthranilic acid series of allosteric thumb pocket 2 HCV NS5B polymerase inhibitors exhibited hindered rotation along a covalent bond axis, and the existence of atropisomer chirality was confirmed by NMR, HPLC analysis on chiral supports, and computational studies. A thorough understanding of the concerted rotational properties and the influence exerted by substituents involved in this steric phenomenon was attained through biophysical studies on a series of truncated analogues. The racemization half-life of a compound within this series was determined to be 69 min, which was consistent with a class 2 atropisomer (intermediate conformational exchange). It was further found by X-ray crystallography that one enantiomer of a compound bound to the intended HCV NS5B polymerase target whereas the mirror image atropisomer was able to bind to an unrelated HIV matrix target. Analogues were then identified that selectively inhibited the former. These studies highlight that atropisomer chirality can lead to distinct entities with specific properties, and the phenomenon of atropisomerism in drug discovery should be evaluated and appropriately managed.


Subject(s)
Antiviral Agents/pharmacology , HIV/drug effects , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Hepacivirus/enzymology , Magnetic Resonance Spectroscopy , Stereoisomerism
9.
J Med Chem ; 57(5): 1932-43, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-23773186

ABSTRACT

The design and preliminary SAR of a new series of 1H-quinazolin-4-one (QAZ) allosteric HCV NS5B thumb pocket 2 (TP-2) inhibitors was recently reported. To support optimization efforts, a molecular dynamics (MD) based modeling workflow was implemented, providing information on QAZ binding interactions with NS5B. This approach predicted a small but critical ligand-binding induced movement of a protein backbone region which increases the pocket size and improves access to the backbone carbonyl groups of Val 494 and Pro 495. This localized backbone shift was consistent with key SAR results and was subsequently confirmed by X-ray crystallography. The MD protocol guided the design of inhibitors, exploiting novel H-bond interactions with the two backbone carbonyl groups, leading to the first thumb pocket 2 NS5B inhibitor with picomolar antiviral potency in genotype (gt) 1a and 1b replicons (EC50 = 120 and 110 pM, respectively) and with EC50 ≤ 80 nM against gt 2-6.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hepacivirus/drug effects , Replicon/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Antiviral Agents/chemistry , Cell Line , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Hepacivirus/enzymology , Hepacivirus/genetics , Molecular Dynamics Simulation , Structure-Activity Relationship
11.
J Med Chem ; 56(17): 7073-83, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-23919803

ABSTRACT

A simple NMR assay was applied to monitor the tendency of compounds to self-aggregate in aqueous media. The observation of unusual spectral trends as a function of compound concentration appears to be signatory of the formation of self-assemblies. (1)H NMR resonances of aggregating compounds were sensitive to the presence of a range of molecular assemblies in solution including large molecular-size entities, smaller multimers, and mixtures of assembled species. The direct observation of aggregates via unusual NMR spectra also correlated with promiscuous behavior of molecules in off-target in vitro pharmacology assays. This empirical assay can have utility for predicting compound promiscuity and should complement predictive methods that principally rely on the computing of descriptors such as lipophilicity (cLogP) and topological surface area (TPSA). This assay should serve as a practical tool for medicinal chemists to monitor compound attributes in aqueous solution and various pharmacologically relevant media, as demonstrated herein.


Subject(s)
Magnetic Resonance Spectroscopy/methods , In Vitro Techniques , Molecular Probes
12.
Bioorg Med Chem Lett ; 23(16): 4663-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23809849

ABSTRACT

A classic synthetic issue that remains unresolved is the reaction that involves the control of N- versus O-alkylation of ambident anions. This common chemical transformation is important for medicinal chemists, who require predictable and reliable protocols for the rapid synthesis of inhibitors. The uncertainty of whether the product(s) are N- and/or O-alkylated is common and can be costly if undetermined. Herein, we report an NMR-based strategy that focuses on distinguishing inhibitors and intermediates that are N- or O-alkylated. The NMR strategy involves three independent and complementary methods. However, any combination of two of the methods can be reliable if the third were compromised due to resonance overlap or other issues. The timely nature of these methods (HSQC/HMQC, HMBC. ROESY, and (13)C shift predictions) allows for contemporaneous determination of regioselective alkylation as needed during the optimization of synthetic routes.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Nitrogen/chemistry , Oxygen/chemistry , Alkylation , Crystallography, X-Ray , HIV Reverse Transcriptase/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Molecular Structure
13.
Bioorg Med Chem Lett ; 23(14): 4132-40, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23768906

ABSTRACT

We describe the structure-based design of a novel lead chemotype that binds to thumb pocket 2 of HCV NS5B polymerase and inhibits cell-based gt1 subgenomic reporter replicons at sub-micromolar concentrations (EC50<200nM). This new class of potent thumb pocket 2 inhibitors features a 1H-quinazolin-4-one scaffold derived from hybridization of a previously reported, low affinity thiazolone chemotype with our recently described anthranilic acid series. Guided by X-ray structural information, a key NS5B-ligand interaction involving the carboxylate group of anthranilic acid based inhibitors was replaced by a neutral two-point hydrogen bonding interaction between the quinazolinone scaffold and the protein backbone. The in vitro ADME and in vivo rat PK profile of representative analogs are also presented and provide areas for future optimization of this new class of HCV polymerase inhibitors.


Subject(s)
Antiviral Agents/chemistry , Drug Design , Hepacivirus/enzymology , Quinazolinones/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Hepacivirus/physiology , Molecular Docking Simulation , Protein Structure, Tertiary , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , ortho-Aminobenzoates/chemistry
14.
J Med Chem ; 56(12): 5142-50, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23730910

ABSTRACT

The pharmaceutical industry has recognized that many drug-like molecules can self-aggregate in aqueous media and have physicochemical properties that skew experimental results and decisions. Herein, we introduce the use of a simple NMR strategy for detecting the formation of aggregates using dilution experiments that can be performed on equipment prevalent in most synthetic chemistry departments. We show that (1)H NMR resonances are sensitive to large molecular-size entities and to smaller multimers and mixtures of species. Practical details are provided for sample preparation and for determining the concentrations of single molecule, aggregate entities, and precipitate. The critical concentrations above which aggregation begins can be found and were corroborated by comparisons with light scattering techniques. Disaggregation can also be monitored using detergents. This NMR assay should serve as a practical and readily available tool for medicinal chemists to better characterize how their compounds behave in aqueous media and influence drug design decisions.


Subject(s)
Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Detergents/chemistry , Magnetic Resonance Spectroscopy , Solubility
15.
Bioorg Med Chem Lett ; 23(9): 2585-9, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23545108

ABSTRACT

A novel series of non-nucleoside thumb pocket 2 HCV NS5B polymerase inhibitors were derived from a fragment-based approach using information from X-ray crystallographic analysis of NS5B-inhibitor complexes and iterative rounds of parallel synthesis. Structure-based drug design strategies led to the discovery of potent sub-micromolar inhibitors 11a-c and 12a-c from a weak-binding fragment-like structure 1 as a starting point.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Binding Sites , Caco-2 Cells , Cell Membrane Permeability/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hepacivirus/enzymology , Humans , Molecular Docking Simulation , Nucleosides/chemistry , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , ortho-Aminobenzoates/chemistry
16.
ChemMedChem ; 8(3): 405-14, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23401268

ABSTRACT

The emergence of resistance to existing classes of antiretroviral drugs underlines the need to find novel human immunodeficiency virus (HIV)-1 targets for drug discovery. The viral capsid protein (CA) represents one such potential target. Recently, a series of benzodiazepine inhibitors was identified via high-throughput screening using an in vitro capsid assembly assay (CAA). Here, we demonstrate how a combination of NMR and X-ray co-crystallography allowed for the rapid characterization of the early hits from this inhibitor series. Ligand-based (19)F NMR was used to confirm inhibitor binding specificity and reversibility as well as to identify the N-terminal domain of the capsid (CA(NTD)) as its molecular target. Protein-based NMR ((1)H and (15)N chemical shift perturbation analysis) identified key residues within the CA(NTD) involved in inhibitor binding, while X-ray co-crystallography confirmed the inhibitor binding site and its binding mode. Based on these results, two conformationally restricted cyclic inhibitors were designed to further validate the possible binding modes. These studies were crucial to early hit confirmation and subsequent lead optimization.


Subject(s)
Benzodiazepines/metabolism , Capsid Proteins/metabolism , HIV-1/metabolism , Benzodiazepines/chemistry , Binding Sites , Capsid Proteins/chemistry , Crystallography, X-Ray , Fluorine/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Nitrogen Isotopes/chemistry , Protein Binding , Protein Structure, Tertiary
17.
J Virol ; 86(12): 6643-55, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496222

ABSTRACT

The emergence of resistance to existing classes of antiretroviral drugs necessitates finding new HIV-1 targets for drug discovery. The viral capsid (CA) protein represents one such potential new target. CA is sufficient to form mature HIV-1 capsids in vitro, and extensive structure-function and mutational analyses of CA have shown that the proper assembly, morphology, and stability of the mature capsid core are essential for the infectivity of HIV-1 virions. Here we describe the development of an in vitro capsid assembly assay based on the association of CA-NC subunits on immobilized oligonucleotides. This assay was used to screen a compound library, yielding several different families of compounds that inhibited capsid assembly. Optimization of two chemical series, termed the benzodiazepines (BD) and the benzimidazoles (BM), resulted in compounds with potent antiviral activity against wild-type and drug-resistant HIV-1. Nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic analyses showed that both series of inhibitors bound to the N-terminal domain of CA. These inhibitors induce the formation of a pocket that overlaps with the binding site for the previously reported CAP inhibitors but is expanded significantly by these new, more potent CA inhibitors. Virus release and electron microscopic (EM) studies showed that the BD compounds prevented virion release, whereas the BM compounds inhibited the formation of the mature capsid. Passage of virus in the presence of the inhibitors selected for resistance mutations that mapped to highly conserved residues surrounding the inhibitor binding pocket, but also to the C-terminal domain of CA. The resistance mutations selected by the two series differed, consistent with differences in their interactions within the pocket, and most also impaired virus replicative capacity. Resistance mutations had two modes of action, either directly impacting inhibitor binding affinity or apparently increasing the overall stability of the viral capsid without affecting inhibitor binding. These studies demonstrate that CA is a viable antiviral target and demonstrate that inhibitors that bind within the same site on CA can have distinct binding modes and mechanisms of action.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid/drug effects , Gene Products, gag/antagonists & inhibitors , HIV Infections/virology , HIV-1/drug effects , Benzimidazoles/pharmacology , Benzodiazepines/pharmacology , Capsid/metabolism , Cell Line , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV Infections/drug therapy , HIV-1/chemistry , HIV-1/genetics , HIV-1/physiology , Humans , Protein Structure, Tertiary , Virus Assembly/drug effects
18.
Bioorg Med Chem Lett ; 21(1): 398-404, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21087861

ABSTRACT

The discovery of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly is described. Synthesis of analogs of the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione hit established structure-activity relationships. Replacement of the enamine functionality of the hit series with either an imidazole or a pyrazole ring led to compounds that inhibited both capsid assembly and reverse transcriptase. Optimization of the bicyclic benzodiazepine scaffold to include a 3-phenyl substituent led to lead compound 48, a pure capsid assembly inhibitor with improved antiviral activity.


Subject(s)
Anti-HIV Agents/chemistry , Benzodiazepinones/chemistry , Capsid Proteins/antagonists & inhibitors , HIV-1/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Benzodiazepinones/chemical synthesis , Benzodiazepinones/pharmacology , Capsid Proteins/metabolism , Drug Evaluation, Preclinical , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Humans , Imidazoles/chemistry , Pyrazoles/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
19.
J Am Chem Soc ; 132(43): 15204-12, 2010 Nov 03.
Article in English | MEDLINE | ID: mdl-20942454

ABSTRACT

Significant advances have led to receptor induced-fit and conformational selection models for describing bimolecular recognition, but a more comprehensive view must evolve to also include ligand shape and conformational changes. Here, we describe an example where a ligand's "structural hinge" influences potency by inducing an "L-shape" bioactive conformation, and due to its solvent exposure in the complex, reasonable conformation-activity-relationships can be qualitatively attributed. From a ligand design perspective, this feature was exploited by successful linker hopping to an alternate "structural hinge" that led to a new and promising chemical series which matched the ligand bioactive conformation and the pocket bioactive space. Using a combination of X-ray crystallography, NMR and modeling with support from binding-site resistance mutant studies and photoaffinity labeling experiments, we were able to derive inhibitor-polymerase complexes for various chemical series.


Subject(s)
Diamide/chemistry , Diamide/pharmacology , Drug Discovery , Hepacivirus , Indoles/chemistry , Molecular Conformation , Viral Nonstructural Proteins/antagonists & inhibitors , Allosteric Regulation , Diamide/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Ligands , Models, Molecular , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
20.
Bioorg Med Chem Lett ; 20(3): 857-61, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20074949

ABSTRACT

SAR studies at the N(1)-position of allosteric indole-based HCV NS5B inhibitors has led to the discovery of acetamide derivatives with good cellular potency in subgenomic replicons (EC(50) <200 nM). This class of inhibitors displayed improved physicochemical properties and favorable ADME-PK profiles over previously described analogs in this class.


Subject(s)
Acetamides/chemistry , Antiviral Agents/chemical synthesis , Carboxylic Acids/chemistry , Drug Discovery , Hepacivirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Nonstructural Proteins/antagonists & inhibitors , Acetamides/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Antiviral Agents/pharmacology , Caco-2 Cells , Carboxylic Acids/pharmacology , Cell Line , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Drug Discovery/methods , Hepacivirus/drug effects , Humans , Microsomes, Liver/enzymology , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...