Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 2(3): 154-163, 2018 May.
Article in English | MEDLINE | ID: mdl-30283900

ABSTRACT

Kyphosis and scoliosis are common spinal disorders that occur as part of complex syndromes or as nonsyndromic, idiopathic diseases. Familial and twin studies implicate genetic involvement, although the causative genes for idiopathic kyphoscoliosis remain to be identified. To facilitate these studies, we investigated progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and assessed them for morphological and radiographic abnormalities. This identified a mouse with kyphoscoliosis due to fused lumbar vertebrae, which was inherited as an autosomal dominant trait; the phenotype was designated as hereditary vertebral fusion (HVF) and the locus as Hvf. Micro-computed tomography (µCT) analysis confirmed the occurrence of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae in HVF mice, consistent with a pattern of blocked vertebrae due to failure of segmentation. µCT scans also showed the lumbar vertebral column of HVF mice to have generalized disc narrowing, displacement with compression of the neural spine, and distorted transverse processes. Histology of lumbar vertebrae revealed HVF mice to have irregularly shaped vertebral bodies and displacement of intervertebral discs and ossification centers. Genetic mapping using a panel of single nucleotide polymorphic (SNP) loci arranged in chromosome sets and DNA samples from 23 HVF (eight males and 15 females) mice, localized Hvf to chromosome 4A3 and within a 5-megabase (Mb) region containing nine protein coding genes, two processed transcripts, three microRNAs, five small nuclear RNAs, three large intergenic noncoding RNAs, and 24 pseudogenes. However, genome sequence analysis in this interval did not identify any abnormalities in the coding exons, or exon-intron boundaries of any of these genes. Thus, our studies have established a mouse model for a monogenic form of nonsyndromic kyphoscoliosis due to fusion of lumbar vertebrae, and further identification of the underlying genetic defect will help elucidate the molecular mechanisms involved in kyphoscoliosis. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

2.
Bioelectromagnetics ; 28(6): 433-8, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17486598

ABSTRACT

An acute rise in blood pressure has been reported in normal volunteers during exposure to signals from a mobile phone handset. To investigate this finding further we carried out a double blind study in 120 healthy volunteers (43 men, 77 women) in whom we measured mean arterial pressure (MAP) during each of six exposure sessions. At each session subjects were exposed to one of six different radio frequency signals simulating both GSM and TETRA handsets in different transmission modes. Blood catechols before and after exposure, heart rate variability during exposure, and post exposure 24 h ambulatory blood pressure were also studied. Despite having the power to detect changes in MAP of less than 1 mmHg none of our measurements showed any effect which we could attribute to radio frequency exposure. We found a single statistically significant decrease of 0.7 mmHg (95% CI 0.3-1.2 mmHg, P = .04) with exposure to GSM handsets in sham mode. This may be due to a slight increase in operating temperature of the handsets when in this mode. Hence our results have not confirmed the original findings of an acute rise in blood pressure due to exposure to mobile phone handset signals. In light of this negative finding from a large study, coupled with two smaller GSM studies which have also proved negative, we are of the view that further studies of acute changes in blood pressure due to GSM and TETRA handsets are not required.


Subject(s)
Blood Pressure/radiation effects , Catechols/blood , Cell Phone , Electromagnetic Fields , Heart Rate/radiation effects , Microwaves , Adolescent , Adult , Dose-Response Relationship, Radiation , Double-Blind Method , Environmental Exposure , Female , Humans , Male , Metabolic Clearance Rate/drug effects , Middle Aged , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...