Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 192(11): 687, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33029661

ABSTRACT

Agricultural subsurface drainage can be an important conduit of nitrate from agricultural fields to streams. This study focused on understanding the variability in nitrate concentrations and loads, exported by subsurface drains, into a small, north-central Iowa stream. Ninety-three subsurface drains in this watershed were sampled up to 5 times between 2006 and 2008. Additionally, 2 subsurface drains and the stream draining the study area (South Fork Iowa River near Blairsburg, IA, USA) were sampled frequently during the growing seasons in 2007 and 2008. Spatial variability analysis revealed no distinct spatial pattern in nitrate concentrations. The median nitrate concentrations were not significantly different when the drain outlets were characterized by diameter (17-23 cm, 27-48 cm, 60-108 cm). The eight large subsurface drains (part of the public drainage network) had less variability in nitrate concentration than the smaller drain sizes and generally contributed 70-87% of the total water and nitrate loads exported by subsurface drains to the stream. During high-discharge events, the medium-sized (27-48 cm) subsurface drains discharging to the stream became more important by contributing a higher discharge and nitrate load. The temporal variability examined in this study found that discharge and nitrate loads were influenced by the amount of precipitation that had occurred over the previous months. This paper demonstrates the spatial and within-season homogeneity of nitrate delivery to a stream from an intensely agricultural landscape that has subsurface drainage.


Subject(s)
Environmental Monitoring , Nitrates , Iowa , Nitrates/analysis , Nitrogen Oxides , Rivers
2.
Sci Total Environ ; 612: 708-719, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28866398

ABSTRACT

BACKGROUND: Metolachlor [(RS)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide] and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) are commonly observed in surface and groundwater. The behavior and fate of these compounds were examined over a 12-year period in seven agricultural watersheds in the United States. They were quantified in air, rain, streams, overland flow, groundwater, soil water, subsurface drain water, and water at the stream/groundwater interface. The compounds were frequently detected in surface and groundwater associated with agricultural areas. A mass budget approach, based on all available data from the study and literature, was used to determine a percentage-wise generalized distribution and fate of applied parent metolachlor in typical agricultural environments. RESULTS: In these watersheds, about 90% of applied metolachlor was taken up by plants or degraded, 10% volatilized, and 0.3% returned as rainfall. One percent was transported to surface water, while an equal amount infiltrated into the unsaturated zone soil water. <0.02% reached the groundwater. Subsurface flow paths resulted in greater degradation of metolachlor because degradation reactions had more time to proceed. CONCLUSIONS: An understanding of the residence times of water in the different environmental compartments, and the important processes affecting metolachlor as it is transported along flowpaths among the environmental compartments allows for a degree of predictability of metolachlor's fate. Degradates with long half-lives can be used (in a limited capacity) as tracers of metolachlor, because of their persistence and widespread occurrence in the environment.

3.
Pest Manag Sci ; 72(5): 1013-22, 2016 May.
Article in English | MEDLINE | ID: mdl-26194175

ABSTRACT

BACKGROUND: Genetically modified (GM) varieties of soybean, corn and cotton have largely replaced conventional varieties in the United States. The most widely used applications of GM technology have been the development of crops that are resistant to a specific broad-spectrum herbicide (primarily glyphosate) or that produce insecticidal compounds within the plant itself. With the widespread adoption of GM crops, a decline in the use of conventional pesticides was expected. RESULTS: There has been a reduction in the annual herbicide application rate to corn since the advent of GM crops, but the herbicide application rate is mostly unchanged for cotton. Herbicide use on soybean has increased. There has been a substantial reduction in the amount of insecticides used on both corn and cotton since the introduction of GM crops. CONCLUSIONS: The observed changes in pesticide use are likely to be the result of many factors, including the introduction of GM crops, regulatory restrictions on some conventional pesticides, introduction of new pesticide technologies and changes in farming practices. In order to help protect human and environmental health and to help agriculture plan for the future, more detailed and complete documentation on pesticide use is needed on a frequent and ongoing basis. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Agriculture/trends , Crops, Agricultural , Herbicides , Insecticides , Plants, Genetically Modified , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Gossypium/genetics , Gossypium/growth & development , Gossypium/physiology , Herbicide Resistance , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Glycine max/genetics , Glycine max/growth & development , Glycine max/physiology , United States , Zea mays/genetics , Zea mays/growth & development , Zea mays/physiology
4.
Environ Toxicol Chem ; 33(6): 1283-93, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24549493

ABSTRACT

A variety of current-use pesticides were determined in weekly composite air and rain samples collected during the 1995 and 2007 growing seasons in the Mississippi Delta (MS, USA) agricultural region. Similar sampling and analytical methods allowed for direct comparison of results. Decreased overall pesticide use in 2007 relative to 1995 generally resulted in decreased detection frequencies in air and rain; observed concentration ranges were similar between years, however, even though the 1995 sampling site was 500 m from active fields whereas the 2007 sampling site was within 3 m of a field. Mean concentrations of detections were sometimes greater in 2007 than in 1995, but the median values were often lower. Seven compounds in 1995 and 5 in 2007 were detected in ≥50% of both air and rain samples. Atrazine, metolachlor, and propanil were detected in ≥50% of the air and rain samples in both years. Glyphosate and its degradation product, aminomethyl-phosphonic acid (AMPA), were detected in ≥75% of air and rain samples in 2007 but were not measured in 1995. The 1995 seasonal wet depositional flux was dominated by methyl parathion (88%) and was >4.5 times the 2007 flux. Total herbicide flux in 2007 was slightly greater than in 1995 and was dominated by glyphosate. Malathion, methyl parathion, and degradation products made up most of the 2007 nonherbicide flux.


Subject(s)
Air/analysis , Pesticides/analysis , Rain/chemistry , Crops, Agricultural/growth & development , Mississippi , Motion , Seasons
5.
J Environ Qual ; 41(1): 155-69, 2012.
Article in English | MEDLINE | ID: mdl-22218184

ABSTRACT

During April 2007 through September 2008, the USGS collected hydrogeologic and water-quality data from a site on the Bogue Phalia to evaluate the role of groundwater and surface-water interaction on the transport of nitrate to the shallow sand and gravel aquifer underlying the Mississippi Alluvial Plain in northwestern Mississippi. A two-dimensional groundwater/surface-water exchange model was developed using temperature and head data and VS2DH, a variably saturated flow and energy transport model. Results from this model showed that groundwater/surface-water exchange at the site occurred regularly and recharge was laterally extensive into the alluvial aquifer. Nitrate was consistently reported in surface-water samples (n = 52, median concentration = 39.8 µmol/L) although never detected in samples collected from in-stream piezometers or shallow monitoring wells adjacent to the stream (n = 46). These two facts, consistent detections of nitrate in surface water and no detections of nitrate in groundwater, coupled with model results that indicate large amounts of surface water moving through an anoxic streambed, support the case for denitrification and nitrate loss through the streambed.


Subject(s)
Groundwater/chemistry , Nitrates/chemistry , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Mississippi , Temperature , Time Factors
6.
Pest Manag Sci ; 68(1): 16-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21681915

ABSTRACT

BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. RESULTS: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.


Subject(s)
Glycine/analogs & derivatives , Herbicides/analysis , Organophosphonates/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Glycine/analysis , Isoxazoles , Tetrazoles , United States , Glyphosate
7.
J Environ Qual ; 37(3): 1158-69, 2008.
Article in English | MEDLINE | ID: mdl-18453435

ABSTRACT

Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.


Subject(s)
Agriculture , Herbicides/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Water Pollutants, Chemical/chemistry , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...