Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1142462, 2023.
Article in English | MEDLINE | ID: mdl-36998698

ABSTRACT

Introduction: With dwindling global freshwater supplies and increasing water stress, agriculture is coming under increasing pressure to reduce water use. Plant breeding requires high analytical capabilities. For this reason, near-infrared spectroscopy (NIRS) has been used to develop prediction equations for whole-plant samples, particularly for predicting dry matter digestibility, which has a major impact on the energy value of forage maize hybrids and is required for inclusion in the official French catalogue. Although the historical NIRS equations have long been used routinely in seed company breeding programmes, they do not predict all variables with the same accuracy. In addition, little is known about how accurate their predictions are under different water stress-environments. Methods: Here, we examined the effects of water stress and stress intensity on agronomic, biochemical, and NIRS predictive values in a set of 13 modern S0-S1 forage maize hybrids under four different environmental conditions resulting from the combination of a northern and southern location and two monitored water stress levels in the south. Results: First, we compared the reliability of NIRS predictions for basic forage quality traits obtained using the historical NIRS predictive equations and the new equations we recently developed. We found that NIRS predicted values were affected to varying degrees by environmental conditions. We also showed that forage yield gradually decreased as a function of water stress, whereas both dry matter and cell wall digestibilities increased regardless of the intensity of water stress, with variability among the tested varieties decreasing under the most stressed conditions. Discussion: By combining forage yield and dry matter digestibility, we were able to quantify digestible yield and identify varieties with different strategies for coping with water stress, raising the exciting possibility that important potential selection targets still exist. Finally, from a farmer's perspective, we were able to show that late silage harvest has no effect on dry matter digestibility and that moderate water stress does not necessarily result in a loss of digestible yield.

2.
Front Plant Sci ; 13: 976371, 2022.
Article in English | MEDLINE | ID: mdl-36311095

ABSTRACT

Identification of cis-regulatory sequences controlling gene expression is an arduous challenge that is being actively explored to discover key genetic factors responsible for traits of agronomic interest. Here, we used a genome-wide de novo approach to investigate preferentially located motifs (PLMs) in the proximal cis-regulatory landscape of Arabidopsis thaliana and Zea mays. We report three groups of PLMs in both the 5'- and 3'-gene-proximal regions and emphasize conserved PLMs in both species, particularly in the 3'-gene-proximal region. Comparison with resources from transcription factor and microRNA binding sites shows that 79% of the identified PLMs are unassigned, although some are supported by MNase-defined cistrome occupancy analysis. Enrichment analyses further reveal that unassigned PLMs provide functional predictions that differ from those derived from transcription factor and microRNA binding sites. Our study provides a comprehensive map of PLMs and demonstrates their potential utility for future characterization of orphan genes in plants.

3.
Front Plant Sci ; 12: 628960, 2021.
Article in English | MEDLINE | ID: mdl-33719300

ABSTRACT

Maize feeding value is strongly linked to plant digestibility. Cell wall composition and structure can partly explain cell wall digestibility variations, and we recently showed that tissue lignification and lignin spatial distribution also contribute to cell wall digestibility variations. Although the genetic determinism of digestibility and cell wall composition has been studied for more than 20 years, little is available concerning that of tissue lignification. Moreover, maize yield is negatively impacted by water deficit, and we newly highlighted the impact of water deficit on cell wall digestibility and composition together with tissue lignification. Consequently, the aim of this study was to explore the genetic mechanisms of lignin distribution in link with cell wall composition and digestibility under contrasted water regimes. Maize internodes from a recombinant inbred line (RIL) population grown in field trials with contrasting irrigation scenarios were biochemically and histologically quantified. Results obtained showed that biochemical and histological traits have different response thresholds to water deficit. Histological profiles were therefore only modified under pronounced water deficit, while most of the biochemical traits responded whatever the strength of the water deficit. Three main clusters of quantitative trait locus (QTL) for histological traits were detected. Interestingly, overlap between the biochemical and histological clusters is rare, and one noted especially colocalizations between histological QTL/clusters and QTL for p-coumaric acid content. These findings reinforce the suspected role of tissue p-coumaroylation for both the agronomic properties of plants as well as their digestibility.

4.
Front Plant Sci ; 10: 488, 2019.
Article in English | MEDLINE | ID: mdl-31105719

ABSTRACT

The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization of its degradability. Moreover, biomass crops need to be better adapted to the changing climate and in particular to periods of drought. Although the negative impact of water deficit on biomass yield has often been mentioned, its impact on biomass quality has only been recently reported in a few species. In the present study, we combined the mapping power of a maize recombinant inbred line population with robust near infrared spectroscopy predictive equations to track the response to water deficit of traits associated with biomass quality. The population was cultivated under two contrasted water regimes over 3 consecutive years in the south of France and harvested at silage stage. We showed that cell wall degradability and ß-O-4-linked H lignin subunits were increased in response to water deficit, while lignin and p-coumaric acid contents were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for agronomical and cell wall-related traits. These QTLs were categorized as "constitutive" (QTL with an effect whatever the irrigation condition) or "responsive" (QTL involved in the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs co-localized with constitutive and yield QTLs, suggesting that specific genetic factors support biomass quality response to water deficit. Overall, our results demonstrate that water deficit favors cell wall degradability and that breeding of varieties that reconcile improved drought-tolerance and biomass degradability is possible.

5.
PLoS One ; 14(12): e0227011, 2019.
Article in English | MEDLINE | ID: mdl-31891625

ABSTRACT

Understanding the mechanisms triggering variation of cell wall degradability is a prerequisite to improving the energy value of lignocellulosic biomass for animal feed or biorefinery. Here, we implemented a multiscale systems approach to shed light on the genetic basis of cell wall degradability in maize. We demonstrated that allele replacement in two pairs of near-isogenic lines at a region encompassing a major quantitative trait locus (QTL) for cell wall degradability led to phenotypic variation of a similar magnitude and sign to that expected from a QTL analysis of cell wall degradability in the F271 × F288 recombinant inbred line progeny. Using DNA sequences within the QTL interval of both F271 and F288 inbred lines and Illumina RNA sequencing datasets from internodes of the selected near-isogenic lines, we annotated the genes present in the QTL interval and provided evidence that allelic variation at the introgressed QTL region gives rise to coordinated changes in gene expression. The identification of a gene co-expression network associated with cell wall-related trait variation revealed that the favorable F288 alleles exploit biological processes related to oxidation-reduction, regulation of hydrogen peroxide metabolism, protein folding and hormone responses. Nested in modules of co-expressed genes, potential new cell-wall regulators were identified, including two transcription factors of the group VII ethylene response factor family, that could be exploited to fine-tune cell wall degradability. Overall, these findings provide new insights into the regulatory mechanisms by which a major locus influences cell wall degradability, paving the way for its map-based cloning in maize.


Subject(s)
Animal Feed , Cell Wall/metabolism , Gene Regulatory Networks , Quantitative Trait Loci , Zea mays/genetics , Alleles , Cell Wall/genetics , Cellulose/metabolism , Chromosome Mapping , Datasets as Topic , Genome, Plant , Hydrogen Peroxide/metabolism , Lignin/metabolism , Oxidation-Reduction , Plant Breeding , Plants, Genetically Modified , Protein Folding , RNA-Seq , Systems Biology , Zea mays/cytology
6.
New Phytol ; 205(3): 1239-1249, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25303640

ABSTRACT

The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells.


Subject(s)
Fungal Proteins/pharmacology , Nicotiana/metabolism , Reactive Oxygen Species/metabolism , Sphingolipids/metabolism , Cell Death/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Cells/drug effects , Plant Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Nicotiana/cytology , Nicotiana/drug effects
8.
New Phytol ; 193(1): 51-57, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22070536

ABSTRACT

• Sphingolipids are emerging as important mediators of cellular and developmental processes in plants, and advances in lipidomics have yielded a wealth of information on the composition of plant sphingolipidomes. Studies using Arabidopsis thaliana showed that the dihydroxy long-chain base (LCB) is desaturated at carbon position 8 (d18:1(Δ8)). This raised important questions on the role(s) of sphingosine (d18:1(Δ4)) and sphingosine-1-phosphate (d18:1(Δ4)-P) in plants, as these LCBs appear to be absent in A. thaliana. • Here, we surveyed 21 species from various phylogenetic groups to ascertain the position of desaturation of the d18:1 LCB, in order to gain further insights into the prevalence of d18:1(Δ4) and d18:1(Δ8) in plants. • Our results showed that d18:1(Δ8) is common in gymnosperms, whereas d18:1(Δ4) is widespread within nonseed land plants and the Poales, suggesting that d18:1(Δ4) is evolutionarily more ancient than d18:1(Δ8) in Viridiplantae. Additionally, phylogenetic analysis indicated that the sphingolipid Δ4-desaturases from Viridiplantae form a monophyletic group, with Angiosperm sequences falling into two distinct clades, the Eudicots and the Poales. • We propose that efforts to elucidate the role(s) of d18:1(Δ4) and d18:1(Δ4)-P should focus on genetically tractable Viridiplantae species where the d18:1 LCB is desaturated at carbon position 4.


Subject(s)
Plants/metabolism , Sphingosine/metabolism , Bayes Theorem , Chromatography, High Pressure Liquid , Phylogeny , Plant Shoots/metabolism , Plants/genetics , o-Phthalaldehyde/metabolism
9.
Plant Physiol ; 157(2): 917-36, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21852416

ABSTRACT

Abscisic acid-, stress-, and ripening-induced (ASR) proteins were first described about 15 years ago as accumulating to high levels during plant developmental processes and in response to diverse stresses. Currently, the effects of ASRs on water deficit tolerance and the ways in which their physiological and biochemical functions lead to this stress tolerance remain poorly understood. Here, we characterized the ASR gene family from maize (Zea mays), which contains nine paralogous genes, and showed that maize ASR1 (ZmASR1) was encoded by one of the most highly expressed paralogs. Ectopic expression of ZmASR1 had a large overall impact on maize yield that was maintained under water-limited stress conditions in the field. Comparative transcriptomic and proteomic analyses of wild-type and ZmASR1-overexpressing leaves led to the identification of three transcripts and 16 proteins up- or down-regulated by ZmASR1. The majority of them were involved in primary and/or cellular metabolic processes, including branched-chain amino acid (BCAA) biosynthesis. Metabolomic and transcript analyses further indicated that ZmASR1-overexpressing plants showed a decrease in BCAA compounds and changes in BCAA-related gene expression in comparison with wild-type plants. Interestingly, within-group correlation matrix analysis revealed a close link between 13 decreased metabolites in ZmASR1-overexpressing leaves, including two BCAAs. Among these 13 metabolites, six were previously shown to be negatively correlated to biomass, suggesting that ZmASR1-dependent regulation of these 13 metabolites might contribute to regulate leaf growth, resulting in improvement in kernel yield.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Plant Proteins/metabolism , Seeds/growth & development , Amino Acid Sequence , Gene Expression Regulation, Plant , Molecular Sequence Data , Multigene Family , Plant Leaves/physiology , Plant Proteins/genetics , Proteomics , Stress, Physiological , Water , Zea mays/genetics
10.
BMC Plant Biol ; 10: 2, 2010 Jan 04.
Article in English | MEDLINE | ID: mdl-20047666

ABSTRACT

BACKGROUND: Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. RESULTS: The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue. CONCLUSIONS: A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.


Subject(s)
Abscisic Acid/biosynthesis , Desiccation , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Endosperm/genetics , Endosperm/metabolism , Gene Expression Profiling , Genes, Plant , Multigene Family , Phylogeny , RNA, Plant/genetics , Sequence Alignment , Water/metabolism , Zea mays/embryology , Zea mays/metabolism
11.
Cell Calcium ; 43(1): 29-37, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17570488

ABSTRACT

Sphingolipids are known to interfere with calcium-based signalling pathways. Here we report that these compounds modulate nuclear calcium signalling in tobacco BY-2 cells. Nuclear protein kinase activity phosphorylated endogenous sphingoid long-chain bases (LCBs), suggesting that LCBs are actively metabolized in the nucleus of tobacco BY-2 cells. The Delta4-unsaturated LCB D-erythro-sphingosine and the saturated LCB D-ribo-phytosphingosine elicited increases in free calcium in the nucleus in a dose-dependent and structure-related manner. However, neither sphingosine-1-phosphate nor C2-ceramide was able to stimulate nuclear calcium changes. N-,N-Dimethyl-D-erythro-sphingosine, a structural analogue of D-erythro-sphingosine, was the most efficient LCB so far tested in eliciting nuclear calcium changes both in intact tobacco BY-2 cells and in isolated nuclei. TRP channel inhibitors prevent the effect of DMS, suggesting that LCBs may activate TRP-like channels located on the inner nuclear membrane Collectively, the obtained data show that nuclei respond to LCBs on their own independently of the cytosolic compartment.


Subject(s)
Calcium/metabolism , Cell Nucleus/metabolism , Nicotiana/metabolism , Sphingolipids/metabolism , Calcium Signaling , Cell Fractionation , Cell Nucleus/enzymology , Cells, Cultured , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingolipids/chemistry , Sphingolipids/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/chemistry , Sphingosine/pharmacology , Nicotiana/cytology , Nicotiana/enzymology , Transient Receptor Potential Channels/antagonists & inhibitors
12.
Plant Cell ; 18(6): 1438-53, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16648366

ABSTRACT

Although pollen tube growth is essential for plant fertilization and reproductive success, the regulators of the actin-related growth machinery and the cytosolic Ca2+ gradient thought to determine how these cells elongate remain poorly defined. Phospholipases, their substrates, and their phospholipid turnover products have been proposed as such regulators; however, the relevant phospholipase(s) have not been characterized. Therefore, we cloned cDNA for a pollen-expressed phosphatidylinositol 4,5-bisphosphate (PtdInsP2)-cleaving phospholipase C (PLC) from Petunia inflata, named Pet PLC1. Expressing a catalytically inactive form of Pet PLC1 in pollen tubes caused expansion of the apical Ca2+ gradient, disruption of the organization of the actin cytoskeleton, and delocalization of growth at the tube tip. These phenotypes were suppressed by depolymerizing actin with low concentrations of latrunculin B, suggesting that a critical site of action of Pet PLC1 is in regulating actin structure at the growing tip. A green fluorescent protein (GFP) fusion to Pet PLC1 caused enrichment in regions of the apical plasma membrane not undergoing rapid expansion, whereas a GFP fusion to the PtdInsP2 binding domain of mammalian PLC delta1 caused enrichment in apical regions depleted in PLC. Thus, Pet PLC1 appears to be involved in the machinery that restricts growth to the very apex of the elongating pollen tube, likely through its regulatory action on PtdInsP2 distribution within the cell.


Subject(s)
Petunia/enzymology , Pollen/enzymology , Pollen/growth & development , Type C Phospholipases/metabolism , Actins/metabolism , Calcium Signaling , Cell Membrane/metabolism , Gene Expression , Golgi Apparatus/metabolism , Molecular Sequence Data , Phosphatidylinositol Diacylglycerol-Lyase/metabolism , Pollen/cytology , Protein Transport , Recombinant Fusion Proteins/metabolism , Type C Phospholipases/chemistry
13.
Plant Physiol ; 137(2): 724-37, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15665242

ABSTRACT

Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Delta4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein alpha-subunit gene, GPA1.


Subject(s)
Arabidopsis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Leaves/enzymology , Sphingosine/analogs & derivatives , Sphingosine/physiology , Arabidopsis/genetics , Kinetics , Molecular Structure , Phylogeny , Sphingosine/chemistry , Substrate Specificity
14.
Biochem Biophys Res Commun ; 314(2): 428-33, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14733923

ABSTRACT

In mesophyll cells (MC) of Digitaria sanguinalis, the C(4)-phosphoenolpyruvate carboxylase (C(4)-PEPC) initiating the photosynthetic pathway is controlled by a complex light-dependent phosphorylation process. We showed previously that the transduction cascade involves the phosphoinositide pathway and a Ca(2+)-dependent step, which precedes the upregulation of the PEPC kinase (PEPCk). We have now further characterized the cascade component requiring Ca(2+). A Ca(2+)-dependent protein kinase that shows several characteristics of the conventional type of mammalian protein kinase C (PKC) was detected in protein extracts from mesophyll cell protoplasts (MCPs). It catalyzed the in vitro phosphorylation of the C1-peptide PKC substrate and was markedly inhibited by a PKC-specific pseudosubstrate domain. However, it was only modestly activated by the phospholipids phosphatidylserine and lysophosphatidylcholine, while choline, oleyl acetylglycerol, phosphatidylinositol, and the phorbol ester phorbol 12-myristate 13-acetate did not show any effect. Nevertheless, its activity was found to be associated with a polypeptide of 75kDa that was recognized by a PKC antibody raised against the C-terminus of rabbit PKCbeta II. In addition, this protein kinase was also inhibited by the Ca(2+)-dependent protein kinase (CDPK)/PKC inhibitors W7, H7, and staurosporine. Surprisingly, it was found to be phosphorylated in dark-adapted MCPs, albeit to a low extent, and this did not change during protoplast induction by light. W7, H7, and staurosporine were shown to markedly inhibit C(4)-PEPC phosphorylation in light-treated MCPs. These results support the view that this protein kinase is a good candidate to represent the Ca(2+)-activated component of the C(4)-PEPC phosphorylation cascade.


Subject(s)
Digitaria/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Plant Extracts/metabolism , Plant Leaves/metabolism , Protein Kinase C/physiology , Animals , Biochemistry/methods , Blotting, Western , Brain/metabolism , Calcium/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Light , Peptides/chemistry , Phosphorylation , Protein Kinase C/chemistry , Protein Kinase C/metabolism , Protein Kinase C beta , Protein Structure, Tertiary , Protoplasts/metabolism , Rabbits , Rats , Signal Transduction , Up-Regulation
15.
Nature ; 423(6940): 651-4, 2003 Jun 05.
Article in English | MEDLINE | ID: mdl-12789341

ABSTRACT

In animals, the sphingolipid metabolite sphingosine-1-phosphate (S1P) functions as both an intracellular messenger and an extracellular ligand for G-protein-coupled receptors of the S1P receptor family, regulating diverse biological processes ranging from cell proliferation to apoptosis. Recently, it was discovered in plants that S1P is a signalling molecule involved in abscisic acid (ABA) regulation of guard cell turgor. Here we report that the enzyme responsible for S1P production, sphingosine kinase (SphK), is activated by ABA in Arabidopsis thaliana, and is involved in both ABA inhibition of stomatal opening and promotion of stomatal closure. Consistent with this observation, inhibition of SphK attenuates ABA regulation of guard cell inward K(+) channels and slow anion channels, which are involved in the regulation of stomatal pore size. Surprisingly, S1P regulates stomatal apertures and guard cell ion channel activities in wild-type plants, but not in knockout lines of the sole prototypical heterotrimeric G-protein alpha-subunit gene, GPA1 (refs 5, 6, 7-8). Our results implicate heterotrimeric G proteins as downstream elements in the S1P signalling pathway that mediates ABA regulation of stomatal function, and suggest that the interplay between S1P and heterotrimeric G proteins represents an evolutionarily conserved signalling mechanism.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Lysophospholipids , Signal Transduction/drug effects , Sphingolipids/pharmacology , Sphingosine/analogs & derivatives , Abscisic Acid/pharmacology , Anions/metabolism , Arabidopsis/drug effects , Arabidopsis/enzymology , Enzyme Activation/drug effects , Ion Channel Gating/drug effects , Ion Channels/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Potassium/metabolism , Sphingolipids/metabolism , Sphingosine/metabolism , Sphingosine/pharmacology
16.
J Exp Bot ; 53(373): 1521-4, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12021300

ABSTRACT

As a PLC activity was implicated in the light transduction pathway that controls C(4) photosynthesis in Digitaria sanguinalis, a full length PLC cDNA (DsPLC2) was cloned. The proteins encoded by the two possible open reading frames were produced in Escherichia coli; they both harbour a PLC activity but with different response to Ca(2+) concentration, and with different sensitivity to the PLC inhibitor U-73122.


Subject(s)
Poaceae/genetics , Type C Phospholipases/genetics , Amino Acid Sequence , Base Sequence , Calcium/pharmacology , Cloning, Molecular , DNA, Complementary/chemistry , DNA, Complementary/genetics , Escherichia coli/genetics , Estrenes/pharmacology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Molecular Sequence Data , Poaceae/classification , Poaceae/enzymology , Pyrrolidinones/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Type C Phospholipases/drug effects , Type C Phospholipases/metabolism
17.
New Phytol ; 153(3): 517-526, 2002 Mar.
Article in English | MEDLINE | ID: mdl-33863229

ABSTRACT

• Guard cells play an important role in the physiology and development of plants. The genetic resources available for Arabidopsis thaliana make it the most favorable plant species for the study of guard cell processes, but it is not easy to isolate highly purified preparations of large numbers of guard cells from this species. Here, we describe methods for isolation of both guard cell and mesophyll cell protoplasts from A. thaliana and their use in the study of unique biochemical and cellular properties of these cell types. • Protocols developed for large- and small-scale preparation of guard cell protoplasts and mesophyll cell protoplasts are described, followed by specific examples of their use in electrophysiological, biochemical and molecular approaches such as patch clamping, enzyme assays, and reverse-transcription polymerase chain reaction. • The protocols described yield millions of highly purified, viable guard cell protoplasts and mesophyll cell protoplasts from A. thaliana. These protoplasts have been used successfully in the study of ion channel properties, assay of ABA activation in phospholipase D activity and comparisons of gene and protein expression levels. • These techniques make it possible to elucidate electrophysiological, biochemical and molecular genetic pathways of guard cell function.

SELECTION OF CITATIONS
SEARCH DETAIL
...