Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(5): 11, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38709524

ABSTRACT

Purpose: The corneal epithelium is the most highly innervated structure in the body. Previously, we reported a novel event whereby stromal axons fuse with basal epithelial cells, limiting nerve penetration into the epithelium. Although corneal-epithelial nerves undergo changes in sensitivity and distribution throughout life and in response to an obesogenic diet, it is unknown if neuronal-epithelial cell fusion is altered. Here, we sought to determine if neuronal-epithelial cell fusion frequency correlates with obesogenic diet consumption and age. Methods: Corneas were collected from C57BL/6 mice and evaluated for neuronal-epithelial cell fusion frequency using serial block-face scanning electron microscopy. To assess the correlation between diet-induced obesity and fusion frequency, 6-week-old mice were fed either a normal diet or an obesogenic diet for 10 weeks. To assess changes in fusion frequency between young and adult mice under normal dietary conditions, 9- and 24-week-old mice were used. Results: Mice fed a 10-week obesogenic diet showed 87% of central-cornea stromal nerves engaged in fusion compared with only 54% in age-matched controls (16 weeks old). In 9-week-old normal-diet animals, 48% of central-cornea stromal nerves contained fusing axons and increased to 81% at 24 weeks of age. Corneal sensitivity loss correlated with increased body weight and adiposity regardless of age and diet. Conclusions: Neuronal-epithelial cell fusion positively correlates with age and obesogenic diet consumption, and corneal nerve sensitivity loss correlates with increased body weight and adiposity, regardless of age and diet. As such, neuronal-epithelial cell fusion may play a role in corneal nerve density and sensitivity regulation.


Subject(s)
Corneal Stroma , Epithelium, Corneal , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Obesity , Animals , Obesity/pathology , Mice , Epithelium, Corneal/pathology , Corneal Stroma/innervation , Corneal Stroma/pathology , Aging/physiology , Male , Disease Models, Animal , Cornea/innervation , Diet, High-Fat/adverse effects
2.
J Vis Exp ; (188)2022 10 06.
Article in English | MEDLINE | ID: mdl-36282718

ABSTRACT

Inflammation and thrombosis are complex processes that occur primarily in the microcirculation. Although standard histology may provide insight into the end pathway for both inflammation and thrombosis, it is not capable of showing the temporal changes that occur throughout the time course of these processes. Intravital microscopy (IVM) is the use of live-animal imaging to gain temporal insight into physiologic processes in vivo. This method is particularly powerful when assessing cellular and protein interactions within the circulation due to the rapid and sequential events that are often necessary for these interactions to occur. While IVM is an extremely powerful imaging methodology capable of viewing complex processes in vivo, there are a number of methodological factors that are important to consider when planning an IVM study. This paper outlines the process of conducting intravital imaging of the liver, identifying important considerations and potential pitfalls that may arise. Thus, this paper describes the use of IVM to study platelet-leukocyte-endothelial interactions in liver sinusoids to study the relative contributions of each in different models of acute liver injury.


Subject(s)
Intravital Microscopy , Leukocytes , Mice , Animals , Intravital Microscopy/methods , Leukocytes/physiology , Endothelium , Microcirculation/physiology , Liver , Inflammation
3.
Microcirculation ; 29(8): e12782, 2022 11.
Article in English | MEDLINE | ID: mdl-36056797

ABSTRACT

OBJECTIVE: Extracellular histones are known mediators of platelet activation, inflammation, and thrombosis. Von Willebrand Factor (vWF) and Toll-like receptor 4 (TLR4) have been implicated in pro-inflammatory and prothrombotic histone responses. The objective of this study was to assess the role of vWF and TLR4 on histone-induced platelet adhesion in vivo. METHODS: Intravital microscopy of the mouse cremaster microcirculation, in the presence of extracellular histones or saline control, was conducted in wild-type, vWF-deficient, and TLR4-deficient mice to assess histone-mediated platelet adhesion. Platelet counts following extracellular histone exposure were conducted. Platelets were isolated from vWF-deficient mice and littermates to assess the role of vWF on histone-induced platelet aggregation. RESULTS: Histones promoted platelet adhesion to cremaster venules in vivo in wild-type animals, as well as in TLR4-deficient mice to a comparable degree. Histones did not lead to increased platelet adhesion in vWF-deficient mice, in contrast to littermate controls. In all genotypes, histones resulted in thrombocytopenia. Histone-induced platelet aggregation ex vivo was similar in vWF-deficient mice and littermate controls. CONCLUSIONS: Histone-induced platelet adhesion to microvessels in vivo is vWF-dependent and TLR4-independent. Platelet-derived vWF was not necessary for histone-induced platelet aggregation ex vivo. These data are consistent with the notion that endothelial vWF, rather than platelet vWF, mediates histone-induced platelet adhesion in vivo.


Subject(s)
Histones , von Willebrand Factor , Animals , Mice , Toll-Like Receptor 4 , Venules , Blood Platelets
4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298979

ABSTRACT

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the ß2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


Subject(s)
Blood Platelets/physiology , CD18 Antigens/physiology , Cell Degranulation , Cornea/blood supply , Erythrocytes/physiology , Hyperemia/physiopathology , Mast Cells/physiology , Neutrophils/physiology , Transendothelial and Transepithelial Migration/physiology , Vasculitis/immunology , Venules/metabolism , Animals , CD18 Antigens/deficiency , Cell Movement , Chemotaxis, Leukocyte , Corneal Injuries/metabolism , Corneal Injuries/pathology , Epithelium, Corneal/physiology , Female , Hyperemia/blood , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Microcirculation , Microscopy, Electron , Models, Animal , Phagocytosis , Regeneration/physiology , Vasculitis/blood , Venules/pathology , Wound Healing/physiology
5.
J Vis Exp ; (169)2021 03 26.
Article in English | MEDLINE | ID: mdl-33843931

ABSTRACT

Serial block-face scanning electron microscopy (SBF-SEM) allows for the collection of hundreds to thousands of serially-registered ultrastructural images, offering an unprecedented three-dimensional view of tissue microanatomy. While SBF-SEM has seen an exponential increase in use in recent years, technical aspects such as proper tissue preparation and imaging parameters are paramount for the success of this imaging modality. This imaging system benefits from the automated nature of the device, allowing one to leave the microscope unattended during the imaging process, with the automated collection of hundreds of images possible in a single day. However, without appropriate tissue preparation cellular ultrastructure can be altered in such a way that incorrect or misleading conclusions might be drawn. Additionally, images are generated by scanning the block-face of a resin-embedded biological sample and this often presents challenges and considerations that must be addressed. The accumulation of electrons within the block during imaging, known as "tissue charging," can lead to a loss of contrast and an inability to appreciate cellular structure. Moreover, while increasing electron beam intensity/voltage or decreasing beam-scanning speed can increase image resolution, this can also have the unfortunate side effect of damaging the resin block and distorting subsequent images in the imaging series. Here we present a routine protocol for the preparation of biological tissue samples that preserves cellular ultrastructure and diminishes tissue charging. We also provide imaging considerations for the rapid acquisition of high-quality serial-images with minimal damage to the tissue block.


Subject(s)
Face/diagnostic imaging , Microscopy, Electron, Scanning/methods , Animals
7.
PLoS One ; 15(9): e0238750, 2020.
Article in English | MEDLINE | ID: mdl-32886728

ABSTRACT

PURPOSE: The purpose of this study was to use a mouse model of diet-induced obesity to determine if corneal dysfunction begins prior to the onset of sustained hyperglycemia and if the dysfunction is ameliorated by diet reversal. METHODS: Six-week-old male C57BL/6 mice were fed a high fat diet (HFD) or a normal diet (ND) for 5-15 weeks. Diet reversal (DiR) mice were fed a HFD for 5 weeks, followed by a ND for 5 or 10 weeks. Corneal sensitivity was determined using aesthesiometry. Corneal cytokine expression was analyzed using a 32-plex Luminex assay. Excised corneas were prepared for immunofluorescence microscopy to evaluate diet-induced changes and wound healing. For wounding studies, mice were fed a HFD or a ND for 10 days prior to receiving a central 2mm corneal abrasion. RESULTS: After 10 days of HFD consumption, corneal sensitivity declined. By 10 weeks, expression of corneal inflammatory mediators increased and nerve density declined. While diet reversal restored nerve density and sensitivity, the corneas remained in a heightened inflammatory state. After 10 days on the HFD, corneal circadian rhythms (limbal neutrophil accumulation, epithelial cell division and Rev-erbα expression) were blunted. Similarly, leukocyte recruitment after wounding was dysregulated and accompanied by delays in wound closure and nerve recovery. CONCLUSION: In the mouse, obesogenic diet consumption results in corneal dysfunction that precedes the onset of sustained hyperglycemia. Diet reversal only partially ameliorated this dysfunction, suggesting a HFD diet may have a lasting negative impact on corneal health that is resistant to dietary therapeutic intervention.


Subject(s)
Cornea/physiopathology , Diet, High-Fat/adverse effects , Hyperglycemia/physiopathology , Obesity/chemically induced , Obesity/complications , Animals , Body Composition/drug effects , Cornea/drug effects , Disease Models, Animal , Homeostasis/drug effects , Hyperglycemia/complications , Leukocytes/cytology , Male , Mice , Mice, Inbred C57BL , Time Factors , Wound Healing/drug effects
8.
PLoS One ; 14(11): e0224434, 2019.
Article in English | MEDLINE | ID: mdl-31721785

ABSTRACT

The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8-10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ≤ 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.


Subject(s)
Cornea/innervation , Epithelium, Corneal/cytology , Neurons/cytology , Animals , Cell Fusion , Male , Mice , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...