Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inflamm Intest Dis ; 3(3): 125-137, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30820434

ABSTRACT

BACKGROUND: Eight percent of the human genome consists of human endogenous retroviruses (HERV). These genetic elements are remnants of ancient retroviral germ-line infections. Altered HERV expression is associated with several chronic inflammatory diseases. A physiological role of the HERV-derived proteins syncytin-1 and -2 has been described for the integrity of the human placental cell layer in terms of maintaining feto-maternal tolerance. The aim of this project was to investigate HERV expression in Crohn's disease (CD) with a further focus on syncytins in the gut. MATERIAL AND METHODS: Seventy-four ileal and colonic tissue samples of CD patients and healthy controls have been investigated for mRNA expression of major HERV groups by a comprehensive microarray screening. The most prominent differences have been validated by qRT-PCR. Immunohistochemistry (IHC), Western Blot (WB) and qRT-PCR were performed for syncytin-1 and -2. RESULTS: HERV microarray screening revealed a distinct expression profile in ileal and colonic tissue, as well as differential expression in CD compared to healthy controls. qRT-PCR validated differential expression of at least 3 HERV-groups in CD. qRT-PCR, IHC and WB showed a tissue-dependent diminished epithelial expression of syncytins in inflamed CD. CONCLUSION: For the first time, HERV expression has been comprehensively studied in the gut. Between CD and healthy controls we could show a tissue dependent differential HERV expression profile. Notably, we could show that syncytin-1 and -2 are expressed in the epithelial layer in ileal and colonic tissue samples, whereas their diminished tissue-dependent expression in inflamed CD might modulate inflammatory processes at the gut barrier.

2.
Front Immunol ; 9: 1735, 2018.
Article in English | MEDLINE | ID: mdl-30100908

ABSTRACT

Background & aims: Knowledge about innate antimicrobial defense of the liver is limited. We investigated hepatic expression and regulation of antimicrobial peptides with focus on the human beta defensin-1 (hBD-1). Methods: Radial diffusion assay was used to analyze antimicrobial activity of liver tissue. Different defensins including hBD-1 and its activator thioredoxin-1 (TXN) were analyzed in healthy and cholestatic liver samples by qPCR and immunostaining. Regulation of hBD-1 expression was studied in vitro and in vivo using bile duct-ligated mice. Regulation of hBD-1 via bilirubin and bile acids (BAs) was studied using siRNA. Results: We found strong antimicrobial activity of liver tissue against Escherichia coli. As a potential mediator of this antimicrobial activity we detected high expression of hBD-1 and TXN in hepatocytes, whereas other defensins were minimally expressed. Using a specific antibody for the reduced, antimicrobially active form of hBD-1 we found hBD-1 in co-localization with TXN within hepatocytes. hBD-1 was upregulated in cholestasis in a graded fashion. In cholestatic mice hepatic AMP expression (Defb-1 and Hamp) was enhanced. Bilirubin and BAs were able to induce hBD-1 in hepatic cell cultures in vitro. Treatment with siRNA and/or agonists demonstrated that the farnesoid X receptor (FXR) mediates basal expression of hBD-1, whereas both constitutive androstane receptor (CAR) and FXR seem to be responsible for the induction of hBD-1 by bilirubin. Conclusion: hBD-1 is prominently expressed in hepatocytes. It is induced during cholestasis through bilirubin and BAs, mediated by CAR and especially FXR. Reduction by TXN activates hBD-1 to a potential key player in innate antimicrobial defense of the liver.


Subject(s)
Bile Acids and Salts/metabolism , Bilirubin/metabolism , Cholestasis/etiology , Cholestasis/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , beta-Defensins/genetics , Adenosine Monophosphate/metabolism , Animals , Cholestasis/pathology , Constitutive Androstane Receptor , Disease Models, Animal , Gene Expression , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Mice , beta-Defensins/metabolism
3.
PLoS One ; 13(6): e0199350, 2018.
Article in English | MEDLINE | ID: mdl-29928061

ABSTRACT

Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Association Studies , Genetic Variation , NLR Proteins/genetics , Open Reading Frames/genetics , Aged , Case-Control Studies , Czech Republic , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Hematopoiesis/genetics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Risk Factors , Survival Analysis
4.
PLoS Pathog ; 13(3): e1006261, 2017 03.
Article in English | MEDLINE | ID: mdl-28323883

ABSTRACT

Ever since the discovery of endogenous host defense antimicrobial peptides it has been discussed how these evolutionary conserved molecules avoid to induce resistance and to remain effective. Human ß-defensin 1 (hBD1) is an ubiquitously expressed endogenous antimicrobial peptide that exhibits qualitatively distinct activities between its oxidized and reduced forms. Here, we explore these antimicrobial mechanisms. Surprisingly, using electron microscopy we detected a so far unknown net-like structure surrounding bacteria, which were treated with the reduced but not the oxidized form of hBD1. A transmigration assay demonstrated that hBD1-derived nets capture bacteria and inhibit bacterial transmigration independent of bacterial killing. The presence of nets could completely prevent migration of hBD1 resistant pathogens and are stable in the presence of human duodenal secretion with a high amount of proteases. In contrast to HD6, cysteins are necessary for net formation. This redox-dependent function serves as an additional mechanism of action for hBD1 and differs from net formation by other defensins such as Paneth cell-derived human α-defensin 6 (HD6). While hBD1red and hBD1ox have distinct antimicrobial profiles and functions, only the reduced form provides additional host protection by entrapping bacteria in extracellular net structures preventing bacterial invasion. Better understanding of the modes of action of endogenous host peptides will help to find new antimicrobial strategies.


Subject(s)
Bacteria/immunology , beta-Defensins/immunology , Body Fluids/metabolism , Duodenum/metabolism , Flow Cytometry , Humans , Microscopy, Electron , Oxidation-Reduction , beta-Defensins/metabolism
5.
Proc Natl Acad Sci U S A ; 112(45): 14000-5, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26512113

ABSTRACT

Crohn's disease (CD) is associated with a multitude of genetic defects, many of which likely affect Paneth cell function. Paneth cells reside in the small intestine and produce antimicrobial peptides essential for the host barrier, principally human α-defensin 5 (HD5) and HD6. Patients with CD of the ileum are characterized by reduced constitutive expression of these peptides and, accordingly, compromised antimicrobial barrier function. Here, we present a previously unidentified regulatory mechanism of Paneth cell defensins. Using cultures of human ileal tissue, we showed that the secretome of peripheral blood mononuclear cells (PBMCs) from healthy controls restored the attenuated Paneth cell α-defensin expression characteristic of patients with ileal CD. Analysis of the Wnt pathway in both cultured biopsies and intestinal epithelial cells implicated Wnt ligands driving the PBMC effect, whereas various tested cytokines were ineffective. We further detected another defect in patients with ileal CD, because the PBMC secretomes derived from patients with CD were unable to restore the reduced HD5/HD6 expression. Accordingly, analysis of PBMC subtypes showed that monocytes of patients with CD express significantly lower levels of canonical Wnt ligands, including Wnt3, Wnt3a, Wnt1, and wntless Wnt ligand secretion mediator (Evi/Wls). These studies reveal an important cross-talk between bone marrow-derived cells and epithelial secretory Paneth cells. Defective Paneth cell-mediated innate immunity due to inadequate Wnt ligand stimulation by monocytes provides an additional mechanism in CD. Because defects of Paneth cell function stemming from various etiologies are overcome by Wnt ligands, this mechanism is a potential therapeutic target for this disease.


Subject(s)
Crohn Disease/physiopathology , Ileum/metabolism , Microbiota/immunology , Monocytes/metabolism , Paneth Cells/metabolism , Receptor Cross-Talk/immunology , alpha-Defensins/metabolism , Crohn Disease/microbiology , DNA Primers/genetics , HEK293 Cells , Humans , Ileum/microbiology , Immunohistochemistry , Monocytes/immunology , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...