Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 14(7): e4965, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38618177

ABSTRACT

Stem cell spheroids are rapidly becoming essential tools for a diverse array of applications ranging from tissue engineering to 3D cell models and fundamental biology. Given the increasing prominence of biotechnology, there is a pressing need to develop more accessible, efficient, and reproducible methods for producing these models. Various techniques such as hanging drop, rotating wall vessel, magnetic levitation, or microfluidics have been employed to generate spheroids. However, none of these methods facilitate the easy and efficient production of a large number of spheroids using a standard 6-well plate. Here, we present a novel method based on pellet culture (utilizing U-shaped microstructures) using a silicon mold produced through 3D printing, along with a detailed and illustrated manufacturing protocol. This technique enables the rapid production of reproducible and controlled spheroids (for 1× 106 cells, spheroids = 130 ± 10 µm) from human induced pluripotent stem cells (hIPSCs) within a short time frame (24 h). Importantly, the method allows the production of large quantities (2 × 104 spheroids for 1 × 106 cells) in an accessible and cost-effective manner, thanks to the use of a reusable mold. The protocols outlined herein are easily implementable, and all the necessary files for the method replication are freely available. Key features • Provision of 3D mold files (STL) to produce silicone induction device of spheroids using 3D printing. • Cost-effective, reusable, and autoclavable device capable of generating up to 1.2 × 104 spheroids of tunable diameters in a 6-well plate. • Spheroids induction with multiple hIPSC cell lines. • Robust and reproducible production method suitable for routine laboratory use.

2.
Acta Biomater ; 180: 230-243, 2024 05.
Article in English | MEDLINE | ID: mdl-38574880

ABSTRACT

In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence. Our approach relies on the UV-triggered reaction of diazirine groups grafted on lysines, leaving critical amino acid residues intact. Notably, GxxGER recognition motifs for collagen-binding integrins, ablated by EDC crosslinking, were left unreacted, enabling cell attachment, spreading, and colonization on films and porous scaffolds. In addition, our procedure conserves the architecture of biomaterials, improves their resistance to collagenase and cellular contraction, and yields material stiffness akin to that obtained with EDC. Importantly, diazirine-crosslinked collagen can host mesenchymal stem cells, highlighting its strong potential as a substrate for tissue repair. We have therefore established a new crosslinking strategy to modulate the mechanical features of collagen porous scaffolds without altering its biological properties, thereby offering an advantageous alternative to carbodiimide treatment. STATEMENT OF SIGNIFICANCE: This article describes an approach to improve the mechanical properties of collagen porous scaffolds, without impacting collagen's natural interactions with cells. This is significant because collagen crosslinking is overwhelmingly performed using carbodiimides, which results in a critical loss of cellular affinity. By contrast, our method leaves key cellular binding sites in the collagen sequence intact, enabling cell-biomaterial interactions. It relies on the fast, UV-triggered reaction of diazirine with collagen, and does not produce toxic by-products. It also supports the culture of mesenchymal stem cells, a pivotal cell type in a wide range of tissue repair applications. Overall, our approach offers an attractive option for the crosslinking of collagen, a prominent material in the growing field of tissue engineering.


Subject(s)
Biocompatible Materials , Collagen , Cross-Linking Reagents , Diazomethane , Mesenchymal Stem Cells , Diazomethane/chemistry , Cross-Linking Reagents/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Collagen/chemistry , Animals , Tissue Scaffolds/chemistry , Cell Communication/drug effects , Humans , Materials Testing , Cell Adhesion/drug effects , Porosity
3.
Article in English | MEDLINE | ID: mdl-38411533

ABSTRACT

The repair of nasal septal cartilage is a key challenge in cosmetic and functional surgery of the nose, as it determines its shape and its respiratory function. Supporting the dorsum of the nose is essential for both the prevention of nasal obstruction and the restoration of the nose structure. Most surgical procedures to repair or modify the nasal septum focus on restoring the external aspect of the nose by placing a graft under the skin, without considering respiratory concerns. Tissue engineering offers a more satisfactory approach, in which both the structural and biological roles of the nose are restored. To achieve this goal, nasal cartilage engineering research has led to the development of scaffolds capable of accommodating cartilaginous extracellular matrix-producing cells, possessing mechanical properties close to those of the nasal septum, and retaining their structure after implantation in vivo. The combination of a non-resorbable core structure with suitable mechanical properties and a biocompatible hydrogel loaded with autologous chondrocytes or mesenchymal stem cells is a promising strategy. However, the stability and immunotolerance of these implants are crucial parameters to be monitored over the long term after in vivo implantation, to definitively assess the success of nasal cartilage tissue engineering. Here, we review the tissue engineering methods to repair nasal cartilage, focusing on the type and mechanical characteristics of the biomaterials; cell and implantation strategy; and the outcome with regard to cartilage repair.

4.
Tissue Eng Part A ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37885209

ABSTRACT

The bioextrusion of mesenchymal stromal cells (MSCs) directly seeded in a bioink enables the production of three-dimensional (3D) constructs, promoting their chondrogenic differentiation. Our study aimed to evaluate the effect of different type I collagen concentrations in the bioink on MSCs' chondrogenic differentiation. We printed 3D constructs using an alginate, gelatin, and fibrinogen-based bioink cellularized with MSCs, with four different quantities of type I collagen addition (0.0, 0.5, 1.0, and 5.0 mg per bioink syringe). We assessed the influence of the bioprinting process, the bioink composition, and the growth factor (TGF-ꞵ1) on the MSCs' survival rate. We confirmed the biocompatibility of the process and the bioinks' cytocompatibility. We evaluated the chondrogenic effects of TGF-ꞵ1 and collagen addition on the MSCs' chondrogenic properties through macroscopic observation, shrinking ratio, reverse transcription polymerase chain reaction, glycosaminoglycan synthesis, histology, and type II collagen immunohistochemistry. The bioink containing 0.5 mg of collagen produces the richest hyaline-like extracellular matrix, presenting itself as a promising tool to recreate the superficial layer of hyaline cartilage. The bioink containing 5.0 mg of collagen enhances the synthesis of a calcified matrix, making it a good candidate for mimicking the calcified cartilaginous layer. Type I collagen thus allows the dose-dependent design of specific hyaline cartilage layers.

5.
Biomater Adv ; 149: 213401, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37018914

ABSTRACT

OBJECTIVE: Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity. METHODS: A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process. RESULTS: We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute. CONCLUSION: The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.


Subject(s)
Mechanotransduction, Cellular , Tissue Engineering , Tissue Engineering/methods , Mechanotransduction, Cellular/physiology , Stress, Mechanical , Bioreactors , Polyesters
6.
Plast Reconstr Surg Glob Open ; 10(1): e4056, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35186622

ABSTRACT

Intraoperative three-dimensional fabrication of living tissues could be the next biomedical revolution in patient treatment. APPROACH: We developed a surgery-ready robotic three-dimensional bioprinter and demonstrated that a bioprinting procedure using medical grade hydrogel could be performed using a 6-axis robotic arm in vivo for treating burn injuries. RESULTS: We conducted a pilot swine animal study on a deep third-degree severe burn model. We observed that the use of cell-laden bioink as treatment substantially affects skin regeneration, producing in situ fibroblast growth factor and vascular endothelial growth factor, necessary for tissue regeneration and re-epidermalization of the wound. CONCLUSIONS: We described an animal study of intraoperative three-dimensional bioprinting living tissue. This emerging technology brings the first proof of in vivo skin printing feasibility using a surgery-ready robotic arm-based bioprinter. Our positive outcome in skin regeneration, joined with this procedure's feasibility, allow us to envision the possibility of using this innovative approach in a human clinical trial in the near future.

7.
Langmuir ; 37(14): 4154-4162, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33787263

ABSTRACT

Freeform reversible embedding of suspended hydrogel (FRESH) is an additive manufacturing technique enabling the 3D printing of soft materials with low or no yield stress. The printed material is embedded during the process until its solidification. From the literature, FRESH abilities are self-healing, reusability, suspending, thermal stability, and high-precision printing. This study proposes a new support hydrogel bath formulation for FRESH 3D printing. To do so, a poloxamer micellar thermoreversible hydrogel is tuned through the addition of poly(ethylene glycol) (PEG) to adapt rheological properties. PEG macromolecules interact with poly(ethylene oxide) blocks of poloxamer and favor micelle dehydration, and then decreasing the gelation temperature, the yield stress, and the viscosity. Parameters such as the Oldroyd number and the Rayleigh-Plateau instability, both dependent on yield stress, were studied to determine their impact on the FRESH 3D printing resolution and accuracy. It was found that print accuracy of embedded parts increases with increasing yield stress but then the self-healing property gets limited, leading to crevasse formation. The usefulness of this approach is distinctly demonstrated through a six-axis printing of a highly complex silicone anatomical model. Printing fidelity of 96.0 ± 3.58% (5-40 mm printed parts) is thus achieved using the newly formulated FRESH material, while only 56.0 ± 0.76% fidelity is obtained using the standard formulation. The present study thus showed that complex FRESH 3D printing of soft materials is possible in this tunable hydrogel and that parts can be manufactured on an industrial scale, thanks to the reusability of the support bath.

8.
Mater Sci Eng C Mater Biol Appl ; 104: 109898, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31499960

ABSTRACT

Surface of the implantable devices is the root cause of several complications such as infections, implant loosening and chronic inflammation. There is an urgent need for multifunctional coatings that can address these shortcomings simultaneously in a manner similar to the structures of extracellular matrix. Herein, we developed a coating system composed of ECM components and a naturally derived polypeptide. The interactions between the coating components create an environment that enables incorporation of an antimicrobial/angiogenic polypeptide. The film composition is based gelatin and hyaluronic acid modified with aldehyde groups (HA-Ald) that can react with poly (arginine) (PAR) through transient interactions. Nanoplasmon measurements demonstrated a significantly higher loading of PAR in films containing HA-Ald with longer retention of PAR in the structure. The presence of PAR not only provides to the film surface antimicrobial (contact-killing) properties but also increased endothelial cell-cell contacts (PECAM) and VEGFA gene expression and secretion by human vascular endothelial cells. This multifunctional coating can be easily applied to surface of implants where it can enact on several problems simultaneously.


Subject(s)
Coated Materials, Biocompatible/pharmacology , Gelatin/pharmacology , Hyaluronic Acid/pharmacology , Peptides/pharmacology , Polymers/pharmacology , Prostheses and Implants , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Extracellular Matrix/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...