Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 61(2): 567-580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37642935

ABSTRACT

Aging is often associated with a decline in cognitive function. A reduction in the number of somatostatin-positive (SOM+) interneurons in the dentate gyrus (DG) has been described in cognitively impaired but not in unimpaired aged rodents. However, it remains unclear whether the reduction in SOM + interneurons in the DG hilus is causal for age-related cognitive dysfunction. We hypothesized that hilar SOM+ interneurons play an essential role in maintaining cognitive function and that a reduction in the number of hilar SOM + interneurons might be sufficient to induce cognitive dysfunction. Hilar SOM+ interneurons were ablated by expressing a diphtheria toxin transgene specifically in these interneurons, which resulted in a reduction in the number of SOM+ /GAD-67+ neurons and dendritic spine density in the DG. C-fos and Iba-1 immunostainings were increased in DG and CA3, but not CA1, and BDNF protein expression in the hippocampus was decreased. Behavioral testing showed a reduced recognition index in the novel object recognition test, decreased alternations in the Y maze test, and longer latencies and path lengths in the learning and reversal learning phases of the Morris water maze. Our results show that partial genetic ablation of SOM+ hilar interneurons is sufficient to increase activity in DG and CA3, as has been described to occur with aging and to induce an impairment of learning and memory functions. Thus, partial ablation of hilar SOM + interneurons may be a significant contributing factor to age-related cognitive dysfunction. These mice may also be useful as a cellularly defined model of hippocampal aging.


Subject(s)
Cognitive Dysfunction , Interneurons , Mice , Animals , Interneurons/metabolism , Hippocampus/metabolism , Neurons/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Somatostatin/metabolism
2.
Hippocampus ; 33(12): 1277-1291, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37767862

ABSTRACT

Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astrocytes in modulating synaptic transmission, more tools that can selectively activate native G protein signaling pathways in astrocytes with both spatial and temporal precision are needed. Here, we utilized AAV8-GFAP-Optoα1AR-eYFP (Optoα1AR), a viral vector that enables activation of Gq signaling in astrocytes via light-sensitive α1-adrenergic receptors. To determine if stimulating astrocytic Optoα1AR modulates hippocampal synaptic transmission, recordings were made in CA1 pyramidal cells with surrounding astrocytes expressing Optoα1AR, channelrhodopsin (ChR2), or GFP. Both high-frequency (20 Hz, 45-ms light pulses, 5 mW, 5 min) and low-frequency (0.5 Hz, 1-s pulses at increasing 1, 5, and 10 mW intensities, 90 s per intensity) blue light stimulation were tested. 20 Hz Optoα1AR stimulation increased both inhibitory and excitatory postsynaptic current (IPSC and EPSC) frequency, and the effect on miniature IPSCs (mIPSCs) was largely reversible within 20 min. However, low-frequency stimulation of Optoα1AR did not modulate either IPSCs or EPSCs, suggesting that astrocytic Gq -dependent modulation of basal synaptic transmission in the hippocampus is stimulation-dependent. By contrast, low-frequency stimulation of astrocytic ChR2 was effective in increasing both synaptic excitation and inhibition. Together, these data demonstrate that Optoα1AR activation in astrocytes changes basal GABAergic and glutamatergic transmission, but only following high-frequency stimulation, highlighting the importance of temporal dynamics when using optical tools to manipulate astrocyte function.


Subject(s)
Astrocytes , Synaptic Transmission , Astrocytes/physiology , Synaptic Transmission/physiology , Hippocampus , Pyramidal Cells/physiology , Synapses/physiology
3.
Nat Neurosci ; 26(7): 1147-1159, 2023 07.
Article in English | MEDLINE | ID: mdl-37336974

ABSTRACT

The external globus pallidus (GPe) of the basal ganglia has been underappreciated owing to poor understanding of its cells and circuits. It was assumed that the GPe consisted of a homogeneous neuron population primarily serving as a 'relay station' for information flowing through the indirect basal ganglia pathway. However, the advent of advanced tools in rodent models has sparked a resurgence in interest in the GPe. Here, we review recent data that have unveiled the cell and circuit complexity of the GPe. These discoveries have revealed that the GPe does not conform to traditional views of the basal ganglia. In particular, recent evidence confirms that the afferent and efferent connections of the GPe span both the direct and the indirect pathways. Furthermore, the GPe displays broad interconnectivity beyond the basal ganglia, consistent with its emerging multifaceted roles in both motor and non-motor functions. In summary, recent data prompt new proposals for computational rules of the basal ganglia.


Subject(s)
Basal Ganglia , Globus Pallidus , Basal Ganglia/physiology , Neurons/physiology , Neural Pathways/physiology
4.
Trends Neurosci ; 46(5): 336-337, 2023 05.
Article in English | MEDLINE | ID: mdl-36935263

ABSTRACT

The external globus pallidus (GPe) regulates motor control. However, whether the GPe encodes non-motor information remains unclear. Two recent studies, by Johansson and Ketzef, and Katabi et al., provide in vivo evidence for GPe neuron processing of sensory stimulation and reward cues via a division of labor among its cell types.


Subject(s)
Globus Pallidus , Neurons , Humans , Globus Pallidus/metabolism , Neurons/metabolism
5.
Neurophotonics ; 7(4): 045007, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163545

ABSTRACT

SIGNIFICANCE: Recent advances in nonlinear optics in neuroscience have focused on using two ultrafast lasers for activity imaging and optogenetic stimulation. Broadband femtosecond light sources can obviate the need for multiple lasers by spectral separation for chromatically targeted excitation. AIM: We present a photonic crystal fiber (PCF)-based supercontinuum source for spectrally resolved two-photon (2P) imaging and excitation of GCaMP6s and C1V1-mCherry, respectively. APPROACH: A PCF is pumped using a 20-MHz repetition rate femtosecond laser to generate a supercontinuum of light, which is spectrally separated, compressed, and recombined to image GCaMP6s (930 nm excitation) and stimulate the optogenetic protein, C1V1-mCherry (1060 nm excitation). Galvanometric spiral scanning is employed on a single-cell level for multiphoton excitation and high-speed resonant scanning is employed for imaging of calcium activity. RESULTS: Continuous wave lasers were used to verify functionality of optogenetic activation followed by directed 2P excitation. Results from these experiments demonstrate the utility of a supercontinuum light source for simultaneous, single-cell excitation and calcium imaging. CONCLUSIONS: A PCF-based supercontinuum light source was employed for simultaneous imaging and excitation of calcium dynamics in brain tissue. Pumped PCFs can serve as powerful light sources for imaging and activation of neural activity, and overcome the limited spectra and space associated with multilaser approaches.

7.
Epilepsy Curr ; 19(3): 187-189, 2019.
Article in English | MEDLINE | ID: mdl-31032637

ABSTRACT

Ionotropic and metabotropic kainate receptor signaling regulates Cl- homeostasis and GABAergic inhibition Garand D, Mahadevan V, Woodin MA. J Physiol. 2018. doi:10.1113/JP276901 Potassium chloride cotransporter 2 (KCC2) plays a critical role in the regulation of chloride (Cl-) homeostasis within mature neurons. The KCC2 is a secondarily active transporter that extrudes Cl- from the neuron, which maintains a low intracellular Cl-concentration [Cl-]. This results in a hyperpolarized reversal potential of GABA ( EGABA), which is required for fast synaptic inhibition in the mature central nervous system. Potassium chloride cotransporter 2 also plays a structural role in dendritic spines and at excitatory synapses and interacts with "excitatory" proteins, including the GluK2 subunit of kainate receptors (KARs). Kainate receptors are glutamate receptors that display both ionotropic and metabotropic signaling. We show that activating KARs in the hippocampus hyperpolarizes EGABA, thus strengthening inhibition. This hyperpolarization occurs via both ionotropic and metabotropic KAR signaling in the CA3 region, whereas it is absent in the GluK1/2-/- mouse, and is independent of zinc release from mossy fiber terminals. The metabotropic signaling mechanism is dependent on KCC2, although the ionotropic signaling mechanism produces a hyperpolarization of EGABA even in the absence of KCC2 transporter function. These results demonstrate a novel functional interaction between a glutamate receptor and KCC2, a transporter critical for maintaining inhibition, suggesting that the KAR:KCC2 complex may play an important role in excitatory:inhibitory balance in the hippocampus. Additionally, the ability of KARs to regulate chloride homeostasis independently of KCC2 suggests that KAR signaling can regulate inhibition via multiple mechanisms. Activation of kainate-type glutamate receptors could serve as an important mechanism for increasing the strength of inhibition during periods of strong glutamatergic activity.

8.
J Neurosci Res ; 97(6): 683-697, 2019 06.
Article in English | MEDLINE | ID: mdl-30680776

ABSTRACT

Learning and memory are fundamental processes that are disrupted in many neurological disorders including Alzheimer's disease and epilepsy. The hippocampus plays an integral role in these functions, and modulation of synaptic transmission mediated by γ-aminobutyric acid (GABA) type-A receptors (GABAA Rs) impacts hippocampus-dependent learning and memory. The protein diazepam binding inhibitor (DBI) differentially modulates GABAA Rs in various brain regions, including hippocampus, and changes in DBI levels may be linked to altered learning and memory. The effects of genetic loss of DBI signaling on these processes, however, have not been determined. In these studies, we examined male and female constitutive DBI knockout mice and wild-type littermates to investigate the role of DBI signaling in modulating multiple forms of hippocampus-dependent spatial learning and memory. DBI knockout mice did not show impaired discrimination of objects in familiar and novel locations in an object location memory test, but did exhibit reduced time spent exploring the objects. Multiple parameters of Barnes maze performance, testing the capability to utilize spatial reference cues, were disrupted in DBI knockout mice. Furthermore, whereas most wild-type mice adopted a direct search strategy upon learning the location of the target hole, knockout mice showed higher rates of using an inefficient random strategy. In addition, DBI knockout mice displayed typical levels of contextual fear conditioning, but lacked a sex difference observed in wild-type mice. Together, these data suggest that DBI selectively influences certain forms of spatial learning and memory, indicating novel roles for DBI signaling in modulating hippocampus-dependent behavior in a task-specific manner.


Subject(s)
Diazepam Binding Inhibitor/physiology , Hippocampus/physiology , Spatial Learning/physiology , Spatial Memory/physiology , Animals , Conditioning, Classical , Diazepam Binding Inhibitor/genetics , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Sex Characteristics , Spatial Navigation/physiology
9.
Neuroscience ; 388: 128-138, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30031126

ABSTRACT

Benzodiazepines are commonly prescribed to treat neurological conditions including epilepsy, insomnia, and anxiety. The discovery of benzodiazepine-specific binding sites on γ-aminobutyric acid type-A receptors (GABAARs) led to the hypothesis that the brain may produce endogenous benzodiazepine-binding site ligands. An endogenous peptide, diazepam binding inhibitor (DBI), which can bind these sites, is thought to be capable of both enhancing and attenuating GABAergic transmission in different brain regions. However, the role that DBI plays in modulating GABAARs in the hippocampus remains unclear. Here, we investigated the role of DBI in modulating synaptic inhibition in the hippocampus using a constitutive DBI knockout mouse. Miniature and evoked inhibitory postsynaptic currents (mIPSCs, eIPSCs) were recorded from CA1 pyramidal cells and dentate gyrus (DG) granule cells. Loss of DBI signaling increased mIPSC frequency and amplitude in CA1 pyramidal cells from DBI knockout mice compared to wild-types. In DG granule cells, conversely, the loss of DBI decreased mIPSC amplitude and increased mIPSC decay time, indicating bidirectional modulation of GABAAR-mediated transmission in specific subregions of the hippocampus. eIPSC paired-pulse ratios were consistent across genotypes, suggesting that alterations in mIPSC frequency were not due to changes in presynaptic release probability. Furthermore, cells from DBI knockout mice did not display altered responsiveness to pharmacological applications of diazepam, a benzodiazepine, nor flumazenil, a benzodiazepine-binding site antagonist. These results provide evidence that genetic loss of DBI alters synaptic inhibition in the adult hippocampus, and that the direction of DBI-mediated modulation can vary discretely between specific subregions of the same brain structure.


Subject(s)
Diazepam Binding Inhibitor/deficiency , Hippocampus/metabolism , Inhibitory Postsynaptic Potentials/physiology , Neurons/metabolism , Animals , Central Nervous System Agents/pharmacology , Diazepam/pharmacology , Diazepam Binding Inhibitor/antagonists & inhibitors , Diazepam Binding Inhibitor/genetics , Female , Flumazenil/pharmacology , Hippocampus/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/physiology , Neurons/drug effects , Receptors, GABA-A/metabolism , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...