Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e15124, 2023.
Article in English | MEDLINE | ID: mdl-37070089

ABSTRACT

Basic knowledge on the biology and epidemiology of equine strongylid species still needs to be improved to contribute to the design of better parasite control strategies. Nemabiome metabarcoding is a convenient tool to quantify and identify species in bulk samples that could overcome the hurdle that cyathostomin morphological identification represents. To date, this approach has relied on the internal transcribed spacer 2 (ITS-2) of the ribosomal RNA gene, with a limited investigation of its predictive performance for cyathostomin communities. Using DNA pools of single cyathostomin worms, this study aimed to provide the first elements to compare performances of the ITS-2 and a cytochrome c oxidase subunit I (COI) barcode newly developed in this study. Barcode predictive abilities were compared across various mock community compositions of two, five and 11 individuals from distinct species. The amplification bias of each barcode was estimated. Results were also compared between various types of biological samples, i.e., eggs, infective larvae or adults. Bioinformatic parameters were chosen to yield the closest representation of the cyathostomin community for each barcode, underscoring the need for communities of known composition for metabarcoding purposes. Overall, the proposed COI barcode was suboptimal relative to the ITS-2 rDNA region, because of PCR amplification biases, reduced sensitivity and higher divergence from the expected community composition. Metabarcoding yielded consistent community composition across the three sample types. However, imperfect correlations were found between relative abundances from infective larvae and other life-stages for Cylicostephanus species using the ITS-2 barcode. While the results remain limited by the considered biological material, they suggest that additional improvements are needed for both the ITS-2 and COI barcodes.


Subject(s)
DNA Barcoding, Taxonomic , Animals , Horses/genetics , DNA, Ribosomal/genetics , DNA Barcoding, Taxonomic/methods , Polymerase Chain Reaction
2.
Pathogens ; 12(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37111426

ABSTRACT

The current control of gastrointestinal (GI) parasitic nematodes mainly relies on the widespread use of anthelmintics, which has inevitably led to resistance. Therefore, there is an urgent need to find new sources of antiparasitic compounds. Macroalgae represent a rich source of active molecules and are widely described as having medicinal properties. In the present study, we investigated the potential anthelmintic activity of aqueous extracts from three species of algae (Bifurcaria bifurcata, Grateloupia turuturu and Osmundea pinnatifida) on the murine parasite Heligmosomoides polygyrus bakeri. Using a set of complementary in vitro tests, including larval development assays, egg hatching tests and nematicidal activity assays on larvae and adults, we report the nematicidal activity of aqueous extracts of B. bifurcata. In addition, aqueous extract fractionation using liquid/liquid partitioning with a solvent of increasing polarity was performed in order to identify the groups of active molecules underlying the anthelmintic activity. Non-polar extracts (heptane, ethyl acetate) demonstrated high anthelmintic potential, highlighting the role of non-polar metabolites such as terpenes. Here, we highlight the strong anthelmintic potential of the brown alga B. bifurcata on a mouse model of GI parasites, thus confirming the strong interest in algae as natural alternatives for the control of parasitic nematodes.

3.
Int J Parasitol ; 53(8): 435-440, 2023 07.
Article in English | MEDLINE | ID: mdl-36965824

ABSTRACT

Levamisole is a broad-spectrum anthelmintic which permanently activates cholinergic receptors from nematodes, inducing a spastic paralysis of the worms. Whereas this molecule is widely used to control parasitic nematodes impacting livestock, its efficacy is compromised by the emergence of drug-resistant parasites. In that respect, there is an urgent need to identify and validate molecular markers associated with resistance. Previous transcriptomic analyses revealed truncated cholinergic receptor subunits as potential levamisole resistance markers in the trichostrongylid nematodes Haemonchus contortus, Telodorsagia circumcincta and Trichostrongylus colubriformis. In the present study we used the Xenopus oocyte, as well as the free-living model nematode Caenorhabditis elegans, as heterologous expression systems to functionally investigate truncated isoforms of the levamisole-sensitive acetylcholine receptor (L-AChR) UNC-63 subunit. In the Xenopus oocyte, we report that truncated UNC-63 from C. elegans has a strong dominant negative effect on the expression of the recombinant C. elegans L-AChRs. In addition, we show that when expressed in C. elegans muscle cells, truncated UNC-63 induces a drastic reduction in levamisole susceptibility in transgenic worms, thus providing the first known functional validation for this molecular marker in vivo.


Subject(s)
Anthelmintics , Haemonchus , Nematoda , Animals , Levamisole/pharmacology , Levamisole/metabolism , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Caenorhabditis elegans , Anthelmintics/pharmacology
4.
iScience ; 26(2): 106044, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36818309

ABSTRACT

The nature and strength of interactions entertained among helminths and their host gut microbiota remain largely unexplored. Using 40 naturally infected Welsh ponies, we tracked the gut microbiota-cyathostomin temporal dynamics and stability before and following anthelmintic treatment and the associated host blood transcriptomic response. High shedders harbored 14 species of cyathostomins, dominated by Cylicocyclus nassatus. They exhibited a highly diverse and temporal dynamic gut microbiota, with butyrate-producing Clostridia likely driving the ecosystem steadiness and host tolerance toward cyathostomins infection. However, anthelmintic administration sharply bent the microbial community. It disrupted the ecosystem stability and the time-dependent network of interactions, affecting longer term microbial resilience. These observations highlight how anthelmintic treatments alter the triangular relationship of parasite, host, and gut microbiota and open new perspectives for adding nutritional intervention to current parasite management strategies.

5.
Parasitology ; 149(11): 1439-1449, 2022 09.
Article in English | MEDLINE | ID: mdl-35929352

ABSTRACT

Alternative strategies to chemical anthelmintics are needed for the sustainable control of equine strongylids. Bioactive forages like sainfoin (Onobrychis viciifolia) could contribute to reducing drug use, with the first hints of in vitro activity against cyathostomin free-living stages observed in the past. We analysed the effect of a sainfoin-rich diet on cyathostomin population and the efficacy of oral ivermectin treatment. Two groups of 10 naturally infected horses were enrolled in a 78-day experimental trial. Following a 1-week adaptation period, they were either fed with dehydrated sainfoin pellets (70% of their diet dry matter) or with alfalfa pellets (control group) for 21-days. No difference was found between the average fecal egg counts (FECs) of the two groups, but a significantly lower increase in larval development rate was observed for the sainfoin group, at the end of the trial. Quantification of cyathostomin species abundances with an ITS-2-based metabarcoding approach revealed that the sainfoin diet did not affect the nemabiome structure compared to the control diet. Following oral ivermectin treatment of all horses on day 21, the drug concentration was lower in horses fed with sainfoin, and cyathostomin eggs reappeared earlier in that group. Our results demonstrated that short-term consumption of a sainfoin-rich diet does not decrease cyathostomin FEC but seems to slightly reduce larval development. Consumption of dehydrated sainfoin pellets also negatively affected ivermectin pharmacokinetics, underscoring the need to monitor horse feeding regimes when assessing ivermectin efficacy in the field.


Subject(s)
Anthelmintics , Fabaceae , Animals , Anthelmintics/pharmacology , Diet/veterinary , Fabaceae/chemistry , Feces , Horses , Ivermectin/pharmacology , Larva , Parasite Egg Count/veterinary
7.
BMC Genomics ; 23(1): 463, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35733088

ABSTRACT

BACKGROUND: Ticks represent a major health issue for humans and domesticated animals. Exploring the expression landscape of the tick's central nervous system (CNS), known as the synganglion, would be an important step in understanding tick physiology and in managing tick-borne diseases, but studies on that topic are still relatively scarce. Neuron-specific genes like the cys-loop ligand-gated ion channels (cys-loop LGICs, or cysLGICs) are important pharmacological targets of acaricides. To date their sequence have not been well catalogued for ticks, and their phylogeny has not been fully studied. RESULTS: We carried out the sequencing of transcriptomes of the I. ricinus synganglion, for adult ticks in different conditions (unfed males, unfed females, and partially-fed females). The de novo assembly of these transcriptomes allowed us to obtain a large collection of cys-loop LGICs sequences. A reference meta-transcriptome based on synganglion and whole body transcriptomes was then produced, showing high completeness and allowing differential expression analyses between synganglion and whole body. Many of the genes upregulated in the synganglion were associated with neurotransmission and/or localized in neurons or the synaptic membrane. As the first step of a functional study of cysLGICs, we cloned the predicted sequence of the resistance to dieldrin (RDL) subunit homolog, and functionally reconstituted the first GABA-gated receptor of Ixodes ricinus. A phylogenetic study was performed for the nicotinic acetylcholine receptors (nAChRs) and other cys-loop LGICs respectively, revealing tick-specific expansions of some types of receptors (especially for Histamine-like subunits and GluCls). CONCLUSIONS: We established a large catalogue of genes preferentially expressed in the tick CNS, including the cysLGICs. We discovered tick-specific gene family expansion of some types of cysLGIC receptors, and a case of intragenic duplication, suggesting a complex pattern of gene expression among different copies or different alternative transcripts of tick neuro-receptors.


Subject(s)
Ixodes , Ligand-Gated Ion Channels , Receptors, Nicotinic , Animals , Female , Ixodes/genetics , Ligand-Gated Ion Channels/genetics , Male , Phylogeny , Receptors, Nicotinic/genetics , Transcriptome
8.
Molecules ; 27(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35011544

ABSTRACT

Natural plant compounds, such as betaine, are described to have nematocidal properties. Betaine also acts as a neurotransmitter in the free-living model nematode Caenorhabditis elegans, where it is required for normal motility. Worm motility is mediated by nicotinic acetylcholine receptors (nAChRs), including subunits from the nematode-specific DEG-3 group. Not all types of nAChRs in this group are associated with motility, and one of these is the DEG-3/DES-2 channel from C. elegans, which is involved in nociception and possibly chemotaxis. Interestingly, the activity of DEG-3/DES-2 channel from the parasitic nematode of ruminants, Haemonchus contortus, is modulated by monepantel and its sulfone metabolite, which belong to the amino-acetonitrile derivative anthelmintic drug class. Here, our aim was to advance the pharmacological knowledge of the DEG-3/DES-2 channel from C. elegans by functionally expressing the DEG-3/DES-2 channel in Xenopus laevis oocytes and using two-electrode voltage-clamp electrophysiology. We found that the DEG-3/DES-2 channel was more sensitive to betaine than ACh and choline, but insensitive to monepantel and monepantel sulfone when used as direct agonists and as allosteric modulators in co-application with betaine. These findings provide important insight into the pharmacology of DEG-3/DES-2 from C. elegans and highlight the pharmacological differences between non-parasitic and parasitic nematode species.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Caenorhabditis elegans Proteins/metabolism , GABA Plasma Membrane Transport Proteins/metabolism , Ion Channel Gating/drug effects , Receptors, Nicotinic/metabolism , Aminoacetonitrile/pharmacology , Animals , Caenorhabditis elegans , Membrane Potentials/drug effects , Sulfones/pharmacology , Xenopus laevis
9.
Br J Pharmacol ; 179(6): 1264-1279, 2022 03.
Article in English | MEDLINE | ID: mdl-34623639

ABSTRACT

BACKGROUND AND PURPOSE: Macrocyclic lactones are the most widely used broad-spectrum anthelmintic drugs for the treatment of parasitic nematodes affecting both human and animal health. Macrocyclic lactones are agonists of the nematode glutamate-gated chloride channels (GluCls). However, for many important nematode species, the GluCls subunit composition and pharmacological properties remain largely unknown. To gain new insights into GluCl diversity and mode of action of macrocyclic lactones, we identified and pharmacologically characterized receptors made of highly conserved GluCl subunits from the model nematode Caenorhabditis elegans, the human filarial nematode Brugia malayi and the horse parasite Parascaris univalens. EXPERIMENTAL APPROACH: AVR-14, GLC-2, GLC3 and GLC-4 are the most conserved GluCl subunits throughout the Nematoda phylum. For each nematode species, we investigated the ability of these subunits to form either homomeric or heteromeric GluCls when expressed in Xenopus laevis oocytes and carried out detailed pharmacological characterization of the functional channels. KEY RESULTS: A total of 14 GluCls were functionally reconstituted, and heteromers formation was inferred from pharmacological criteria. The GLC-2 subunit plays a pivotal role in the composition of heteromeric GluCls in nematodes. We also found a novel GluCl subtype, combining GLC-2/GLC-3 subunits, for which a high concentration of the anthelmintics ivermectin and moxidectin reversibly potentiates glutamate-induced response. CONCLUSION AND IMPLICATIONS: This study brings new insights into the diversity of GluCl subtypes in nematodes and promotes novel drug targets for the development of the next generation of anthelmintic compounds.


Subject(s)
Anthelmintics , Nematoda , Animals , Anthelmintics/pharmacology , Caenorhabditis elegans , Chloride Channels , Horses , Ivermectin/pharmacology , Lactones
10.
PLoS Pathog ; 17(2): e1008982, 2021 02.
Article in English | MEDLINE | ID: mdl-33544769

ABSTRACT

In the absence of efficient alternative strategies, the control of parasitic nematodes, impacting human and animal health, mainly relies on the use of broad-spectrum anthelmintic compounds. Unfortunately, most of these drugs have a limited single-dose efficacy against infections caused by the whipworm, Trichuris. These infections are of both human and veterinary importance. However, in contrast to a wide range of parasitic nematode species, the narrow-spectrum anthelmintic oxantel has a high efficacy on Trichuris spp. Despite this knowledge, the molecular target(s) of oxantel within Trichuris is still unknown. In the distantly related pig roundworm, Ascaris suum, oxantel has a small, but significant effect on the recombinant homomeric Nicotine-sensitive ionotropic acetylcholine receptor (N-AChR) made up of five ACR-16 subunits. Therefore, we hypothesized that in whipworms, a putative homolog of an ACR-16 subunit, can form a functional oxantel-sensitive receptor. Using the pig whipworm T. suis as a model, we identified and cloned a novel ACR-16-like subunit and successfully expressed the corresponding homomeric channel in Xenopus laevis oocytes. Electrophysiological experiments revealed this receptor to have distinctive pharmacological properties with oxantel acting as a full agonist, hence we refer to the receptor as an O-AChR subtype. Pyrantel activated this novel O-AChR subtype moderately, whereas classic nicotinic agonists surprisingly resulted in only minor responses. We observed that the expression of the ACR-16-like subunit in the free-living nematode Caenorhabditis elegans conferred an increased sensitivity to oxantel of recombinant worms. We demonstrated that the novel Tsu-ACR-16-like receptor is indeed a target for oxantel, although other receptors may be involved. These finding brings new insight into the understanding of the high sensitivity of whipworms to oxantel, and highlights the importance of the discovery of additional distinct receptor subunit types within Trichuris that can be used as screening tools to evaluate the effect of new synthetic or natural anthelmintic compounds.


Subject(s)
Antinematodal Agents/pharmacology , Helminth Proteins/antagonists & inhibitors , Pyrantel/analogs & derivatives , Receptors, Cholinergic/chemistry , Trichuriasis/drug therapy , Trichuris/drug effects , Animals , Caenorhabditis elegans/drug effects , Female , Helminth Proteins/classification , Helminth Proteins/metabolism , Male , Pyrantel/pharmacology , Receptors, Cholinergic/classification , Receptors, Cholinergic/metabolism , Swine , Trichuriasis/metabolism , Trichuriasis/parasitology , Xenopus laevis/metabolism
11.
PLoS Pathog ; 15(2): e1007598, 2019 02.
Article in English | MEDLINE | ID: mdl-30759156

ABSTRACT

Resistance to the anthelmintic macrocyclic lactone ivermectin (IVM) has a great impact on the control of parasitic nematodes. The mechanisms by which nematodes adapt to IVM remain to be deciphered. We have identified NHR-8, a nuclear hormone receptor involved in the xenobiotic response in Caenorhabditis elegans, as a new regulator of tolerance to IVM. Loss-of-function nhr-8(ok186) C. elegans mutants subjected to larval development assays and electropharyngeogram measurements, displayed hypersensitivity to IVM, and silencing of nhr-8 in IVM-resistant worms increased IVM efficacy. In addition, compared to wild-type worms, nhr-8 mutants under IVM selection pressure failed to acquire tolerance to the drug. In addition, IVM-hypersensitive nhr-8(ok186) worms displayed low transcript levels of several genes from the xenobiotic detoxification network and a concomitant low Pgp-mediated drug efflux activity. Interestingly, some pgp and cyp genes known to impact IVM tolerance in many nematode species, were down regulated in nhr-8 mutants and inversely upregulated in IVM-resistant worms. Moreover, pgp-6 overexpression in nhr-8(ok186) C. elegans increased tolerance to IVM. Importantly, NHR-8 function was rescued in nhr-8(ok186) C. elegans with the homolog of the parasitic nematode Haemonchus contortus, and silencing of Hco-nhr-8 by RNAi on L2 H. contortus larvae increased IVM susceptibility in both susceptible and resistant H. contortus isolates. Thus, our data show that NHR-8 controls the tolerance and development of resistance to IVM in C. elegans and the molecular basis for this relates to the NHR-8-mediated upregulation of IVM detoxification genes. Since our results show that Hco-nhr-8 functions similarly to Cel-nhr-8, this study helps to better understand mechanisms underlying failure in drug efficacy and open perspectives in finding new compounds with NHR-8 antagonist activity to potentiate IVM efficacy.


Subject(s)
Caenorhabditis elegans Proteins/drug effects , Caenorhabditis elegans Proteins/metabolism , Ivermectin/metabolism , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Anthelmintics , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/physiology , Drug Resistance , Gene Expression Regulation/drug effects , Haemonchus , Ivermectin/pharmacology , Larva , Nematode Infections/virology , Receptors, Cytoplasmic and Nuclear/physiology , Transcription Factors/drug effects , Zinc Finger E-box-Binding Homeobox 1/drug effects
12.
Int J Parasitol Drugs Drug Resist ; 8(3): 540-549, 2018 12.
Article in English | MEDLINE | ID: mdl-30502120

ABSTRACT

The control of parasitic nematodes impacting animal health relies on the use of broad spectrum anthelmintics. However, intensive use of these drugs has led to the selection of resistant parasites in livestock industry. In that respect, there is currently an urgent need for novel compounds able to control resistant parasites. Nicotine has also historically been used as a de-wormer but was removed from the market when modern anthelmintics became available. The pharmacological target of nicotine has been identified in nematodes as acetylcholine-gated ion channels. Nicotinic-sensitive acetylcholine receptors (N-AChRs) therefore represent validated pharmacological targets that remain largely under-exploited. In the present study, using an automated larval migration assay (ALMA), we report that nicotinic derivatives efficiently paralyzed a multiple (benzimidazoles/levamisole/pyrantel/ivermectin) resistant field isolate of H. contortus. Using C. elegans as a model we confirmed that N-AChRs are preferential targets for nornicotine and anabasine. Functional expression of the homomeric N-AChR from C. elegans and the distantly related horse parasite Parascaris equorum in Xenopus oocytes highlighted some striking differences in their respective pharmacological properties towards nicotine derivative sensitivity. This work validates the exploitation of the nicotine receptors of parasitic nematodes as targets for the development of resistance-breaking compounds.


Subject(s)
Antinematodal Agents/pharmacology , Drug Delivery Systems , Nematoda/drug effects , Nicotine/pharmacology , Receptors, Nicotinic/drug effects , Animals , Anthelmintics/pharmacology , Ascaridoidea/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Drug Resistance, Multiple , Haemonchus/drug effects , Haemonchus/physiology , Helminth Proteins/drug effects , Helminth Proteins/metabolism , Horses/parasitology , Larva/drug effects , Larva/physiology , Levamisole/pharmacology , Livestock/parasitology , Nematode Infections/drug therapy , Nematode Infections/parasitology , Nicotine/chemistry , Protein Subunits/metabolism , Sheep , Xenopus laevis
13.
PLoS Pathog ; 14(5): e1006996, 2018 05.
Article in English | MEDLINE | ID: mdl-29719008

ABSTRACT

Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a 'model hopping' approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/drug effects , Cholinergic Agonists/pharmacology , Animals , Animals, Genetically Modified , Antinematodal Agents/pharmacology , Caenorhabditis elegans/genetics , Female , Gene Silencing , Genes, Helminth , Haemonchus/drug effects , Haemonchus/genetics , Haemonchus/pathogenicity , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Levamisole/pharmacology , Nematoda/classification , Nematoda/genetics , Nematode Infections/drug therapy , Nematode Infections/parasitology , Oocytes/drug effects , Oocytes/metabolism , Phylogeny , Protein Subunits , Pyrantel/pharmacology , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/genetics , Receptors, Cholinergic/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Xenopus laevis
14.
Br J Pharmacol ; 173(16): 2463-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27238203

ABSTRACT

BACKGROUND AND PURPOSE: Control of nematode parasite infections relies largely on anthelmintic drugs, several of which act on nicotinic ACh receptors (nAChRs), and there are concerns about the development of resistance. There is an urgent need for development of new compounds to overcome resistance and novel anthelmintic drug targets. We describe the functional expression and pharmacological characterization of a homomeric nAChR, ACR-16, from a nematode parasite. EXPERIMENTAL APPROACH: Using RT-PCR, molecular cloning and two-electrode voltage clamp electrophysiology, we localized acr-16 mRNA in Ascaris suum (Asu) and then cloned and expressed acr-16 cRNA in Xenopus oocytes. Sensitivity of these receptors to cholinergic anthelmintics and a range of nicotinic agonists was tested. KEY RESULTS: Amino acid sequence comparison with vertebrate nAChR subunits revealed ACR-16 to be most closely related to α7 receptors, but with some striking distinctions. acr-16 mRNA was recovered from Asu somatic muscle, pharynx, ovijector, head and intestine. In electrophysiological experiments, the existing cholinergic anthelmintic agonists (morantel, levamisole, methyridine, thenium, bephenium, tribendimidine and pyrantel) did not activate Asu-ACR-16 (except for a small response to oxantel). Other nAChR agonists: nicotine, ACh, cytisine, 3-bromocytisine and epibatidine, produced robust current responses which desensitized at a rate varying with the agonists. Unlike α7, Asu-ACR-16 was insensitive to α-bungarotoxin and did not respond to genistein or other α7 positive allosteric modulators. Asu-ACR-16 had lower calcium permeability than α7 receptors. CONCLUSIONS AND IMPLICATIONS: We suggest that ACR-16 has diverse tissue-dependent functions in nematode parasites and is a suitable drug target for development of novel anthelmintic compounds.


Subject(s)
Ascaris suum/metabolism , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Amino Acid Sequence , Animals , Ascaris suum/drug effects , Ascaris suum/genetics , Female , Nicotinic Antagonists/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics
15.
PLoS Pathog ; 11(12): e1005267, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625142

ABSTRACT

Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.


Subject(s)
Helminth Proteins/metabolism , Nematoda/metabolism , Receptors, Cholinergic/metabolism , Animals , Anthelmintics/pharmacology , Ascaridoidea/genetics , Ascaridoidea/metabolism , Base Sequence , Haemonchus/genetics , Haemonchus/metabolism , Helminth Proteins/genetics , In Situ Hybridization , Molecular Sequence Data , Morantel/pharmacology , Nematoda/genetics , Patch-Clamp Techniques , Phylogeny , Polymerase Chain Reaction , Receptors, Cholinergic/genetics
16.
PLoS Pathog ; 10(1): e1003870, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497826

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) of parasitic nematodes are required for body movement and are targets of important "classical" anthelmintics like levamisole and pyrantel, as well as "novel" anthelmintics like tribendimidine and derquantel. Four biophysical subtypes of nAChR have been observed electrophysiologically in body muscle of the nematode parasite Oesophagostomum dentatum, but their molecular basis was not understood. Additionally, loss of one of these subtypes (G 35 pS) was found to be associated with levamisole resistance. In the present study, we identified and expressed in Xenopus oocytes, four O. dentatum nAChR subunit genes, Ode-unc-38, Ode-unc-63, Ode-unc-29 and Ode-acr-8, to explore the origin of the receptor diversity. When different combinations of subunits were injected in Xenopus oocytes, we reconstituted and characterized four pharmacologically different types of nAChRs with different sensitivities to the cholinergic anthelmintics. Moreover, we demonstrate that the receptor diversity may be affected by the stoichiometric arrangement of the subunits. We show, for the first time, different combinations of subunits from a parasitic nematode that make up receptors sensitive to tribendimidine and derquantel. In addition, we report that the recombinant levamisole-sensitive receptor made up of Ode-UNC-29, Ode-UNC-63, Ode-UNC-38 and Ode-ACR-8 subunits has the same single-channel conductance, 35 pS and 2.4 ms mean open-time properties, as the levamisole-AChR (G35) subtype previously identified in vivo. These data highlight the flexible arrangements of the receptor subunits and their effects on sensitivity and resistance to the cholinergic anthelmintics; pyrantel, tribendimidine and/or derquantel may still be effective on levamisole-resistant worms.


Subject(s)
Anthelmintics/pharmacology , Helminth Proteins/metabolism , Indoles/pharmacology , Nematoda/metabolism , Oxepins/pharmacology , Phenylenediamines/pharmacology , Receptors, Nicotinic/metabolism , Animals , Helminth Proteins/genetics , Nematoda/genetics , Receptors, Nicotinic/genetics , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...