Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1200360, 2023.
Article in English | MEDLINE | ID: mdl-37361995

ABSTRACT

Neural stem cells (NSCs) persist in specific brain germinative niches and sustain neurogenesis throughout life in adult mammals. In addition to the two major stem cell niches in the subventricular zone and the hippocampal dentate gyrus, the area postrema located in the brainstem has been identified as a neurogenic zone as well. NSCs are regulated by signals from the microenvironment that adjust stem cell response to the needs of the organism. Evidence accumulated over the past decade indicates that Ca2+ channels play pivotal functions in NSC maintenance. In this study, we explored in area postrema NSCs the presence and roles of a subset of Ca2+ channels, the store-operated Ca2+ channels (SOCs) that have the capacity to transduce extracellular signals into Ca2+ signals. Our data show that NSCs derived from the area postrema express TRPC1 and Orai1, known to form SOCs, as well as their activator STIM1. Ca2+ imaging indicated that NSCs exhibit store-operated Ca2+ entries (SOCEs). Pharmacological blockade of SOCEs with SKF-96365, YM-58483 (also known as BTP2) or GSK-7975A resulted in decreased NSC proliferation and self-renewal, indicating a major role for SOCs in maintaining NSC activity within the area postrema. Furthermore, our results show that leptin, an adipose tissue-derived hormone whose ability to control energy homeostasis is dependent on the area postrema, decreased SOCEs and reduced self-renewal of NSCs in the area postrema. As aberrant SOC function has been linked to an increasing number of diseases, including brain disorders, our study opens new perspectives for NSCs in brain pathophysiology.

2.
Stem Cells ; 41(3): 252-259, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36635952

ABSTRACT

Mainly known for its role in immune defense and inflammation, interleukin 22 (IL-22) has emerged over the past decade as a cytokine involved in the adaptation of stem/progenitor cell activity for tissue homeostasis and repair. IL-22 is present in the brain, which harbors neural stem cells (NSC) in specific niches of which the ventricular-subventricular zone (V-SVZ) is the most important. In this study, we examined a possible effect of IL-22 on NSC in the adult mouse brain. We demonstrate that the IL-22 receptor is expressed in the V-SVZ, mainly in NSC characterized by their SOX2 expression. Addition of IL-22 to V-VSZ cell cultures resulted in an increase in NSC self-renewal, associated with a shift in NSC division mode towards symmetric proliferative divisions at the expense of differentiative divisions. Conversely, loss of IL-22 in knockout mice led to a decrease in neurosphere yield, suggesting a reduction in the NSC population, which was confirmed by the decrease in cells retaining BrdU labeling in IL-22 knockout mice. Our study supports that IL-22 is involved in the development and/or maintenance of V-VSZ NSC and opens new avenues to further investigate the role of IL-22 in NSC biology in health and disease.


Subject(s)
Cell Self Renewal , Neural Stem Cells , Mice , Animals , Neurogenesis , Brain/metabolism , Neural Stem Cells/metabolism , Cell Differentiation , Mice, Knockout , Interleukins/metabolism , Cell Proliferation , Interleukin-22
3.
Cancers (Basel) ; 13(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298643

ABSTRACT

Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.

4.
Oncotarget ; 9(41): 26309-26327, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29899861

ABSTRACT

BACKGROUND: Chronic myeloid leukemia (CML) results from hematopoietic stem cell transformation by the bcr-abl chimeric oncogene, encoding a 210 kDa protein with constitutive tyrosine kinase activity. In spite of the efficiency of tyrosine kinase inhibitors (TKI; Imatinib), other strategies are explored to eliminate CML leukemia stem cells, such as calcium pathways. RESULTS: In this work, we showed that Store-Operated Calcium Entry (SOCE) and thrombin induced calcium influx were decreased in Bcr-Abl expressing 32d cells (32d-p210). The 32d-p210 cells showed modified Orai1/STIM1 ratio and reduced TRPC1 expression that could explain SOCE reduction. Decrease in SOCE and thrombin induced calcium entry was associated to reduced Nuclear Factor of Activated T cells (NFAT) nucleus translocation in 32d-p210 cells. We demonstrated that SOCE blockers enhanced cell mobility of 32d-p210 cells and reduced the proliferation rate in both 32d cell lines. TKI treatment slightly reduced the thrombin-induced response, but imatinib restored SOCE to the wild type level. Bcr-Abl is also known to deregulate Protein Kinase C (PKC), which was described to modulate calcium entries. We showed that PKC enhances SOCE and thrombin induced calcium entries in control cells while this effect is lost in Bcr-Abl-expressing cells. CONCLUSION: The tyrosine kinase activity seems to regulate calcium entries probably not directly but through a global cellular reorganization involving a PKC pathway. Altogether, calcium entries are deregulated in Bcr-Abl-expressing cells and could represent an interesting therapeutic target in combination with TKI.

SELECTION OF CITATIONS
SEARCH DETAIL
...