Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798372

ABSTRACT

The ketogenic diet (KD) has garnered considerable attention due to its potential benefits in weight loss, health improvement, and performance enhancement. However, the phenotypic responses to KD vary widely between individuals. Skeletal muscle is a major contributor to ketone body (KB) catabolism, however, the regulation of ketolysis is not well understood. In this study, we evaluated how mTORC1 activation and a ketogenic diet modify ketone body disposal in muscle Tsc1 knockout (KO) mice, inbred A/J mice, and Diversity Outbred (DO) mice. Muscle Tsc1 KO mice demonstrated enhanced ketone body clearance. Contrary to expectations, KD feeding in A/J mice did not improve KB disposal, and in most strains disposal was reduced. Transcriptional analysis revealed reduced expression of important ketolytic genes in KD-fed A/J mice, suggesting impaired KB catabolism. Diversity Outbred (DO) mice displayed variable responses to KD, with most mice showing worsened KB disposal. Exploratory analysis on these data suggest potential correlations between KB disposal and cholesterol levels as well as weight gain on a KD. Our findings suggest that ketone body disposal may be regulated by both nutritional and genetic factors and these relationships may help explain interindividual variability in responses to ketogenic diets.

2.
FEBS Open Bio ; 14(3): 426-433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38129969

ABSTRACT

Genetically diverse outbred mice allow for the study of genetic variation in the context of high dietary and environmental control. Using a machine learning approach, we investigated clinical and morphometric factors that associate with serum cholesterol levels in 840 genetically unique Diversity Outbred mice of both sexes (n = 417 male and 423 female), and on both a control chow (% kcals in diet: protein 22%, carbohydrate 62%, fat 16%, no cholesterol) and high fat high sucrose (% kcals in diet: protein 15%, carbohydrate 41%, fat 45%, 0.05% cholesterol). We find expected elevations of cholesterol in male mice, as well as in mice with elevated serum triglycerides and/or fed a high fat high sucrose diet. The third strongest predictor was serum calcium which correlated with serum cholesterol across both diets and sexes (r = 0.39-0.48) in both Diversity Outbred (P = 3.0 × 10-43 ) and BXD (P = 0.005) mice. This is in-line with several human cohort studies which show associations between calcium and cholesterol, and calcium as an independent predictor of cardiovascular events.


Subject(s)
Calcium , Dietary Carbohydrates , Humans , Mice , Male , Female , Animals , Triglycerides , Cross-Sectional Studies , Cholesterol/metabolism , Sucrose
3.
bioRxiv ; 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36798159

ABSTRACT

Genetically diverse outbred mice allow for the study of genetic variation in the context of high dietary and environmental control. Using a machine learning approach we investigated clinical and morphometric factors that associate with serum cholesterol levels in 840 genetically unique mice of both sexes, and on both a control chow and high fat high sucrose diet. We find expected elevations of cholesterol in male mice, those with elevated serum triglycerides and/or fed a high fat high sucrose diet. The third strongest predictor was serum calcium which correlated with serum cholesterol across both diets and sexes (r=0.39-0.48). This is in-line with several human cohort studies which show associations between calcium and cholesterol, and calcium as an independent predictor of cardiovascular events.

SELECTION OF CITATIONS
SEARCH DETAIL
...