Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 36(2): 109364, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34214467

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Receptors, Virus , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Cell Cycle , Cell Line, Tumor , Chlorocebus aethiops , Gene Expression Profiling , Heparitin Sulfate/metabolism , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Models, Biological , Protein Binding , Protein Domains , Proteomics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Internalization , Virus Replication
3.
Nucleic Acids Res ; 48(17): 9415-9432, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32658293

ABSTRACT

Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.


Subject(s)
Nucleosomes/metabolism , Proteins/metabolism , Anaphase-Promoting Complex-Cyclosome/metabolism , Binding Sites , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Metaphase , Mutation , Proteomics/methods , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Clin Cancer Res ; 24(8): 1932-1943, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29440177

ABSTRACT

Purpose: Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare, aggressive ovarian cancer in young women that is universally driven by loss of the SWI/SNF ATPase subunits SMARCA4 and SMARCA2. A great need exists for effective targeted therapies for SCCOHT.Experimental Design: To identify underlying therapeutic vulnerabilities in SCCOHT, we conducted high-throughput siRNA and drug screens. Complementary proteomics approaches profiled kinases inhibited by ponatinib. Ponatinib was tested for efficacy in two patient-derived xenograft (PDX) models and one cell-line xenograft model of SCCOHT.Results: The receptor tyrosine kinase (RTK) family was enriched in siRNA screen hits, with FGFRs and PDGFRs being overlapping hits between drug and siRNA screens. Of multiple potent drug classes in SCCOHT cell lines, RTK inhibitors were only one of two classes with selectivity in SCCOHT relative to three SWI/SNF wild-type ovarian cancer cell lines. We further identified ponatinib as the most effective clinically approved RTK inhibitor. Reexpression of SMARCA4 was shown to confer a 1.7-fold increase in resistance to ponatinib. Subsequent proteomic assessment of ponatinib target modulation in SCCOHT cell models confirmed inhibition of nine known ponatinib target kinases alongside 77 noncanonical ponatinib targets in SCCOHT. Finally, ponatinib delayed tumor doubling time 4-fold in SCCOHT-1 xenografts while reducing final tumor volumes in SCCOHT PDX models by 58.6% and 42.5%.Conclusions: Ponatinib is an effective agent for SMARCA4-mutant SCCOHT in both in vitro and in vivo preclinical models through its inhibition of multiple kinases. Clinical investigation of this FDA-approved oncology drug in SCCOHT is warranted. Clin Cancer Res; 24(8); 1932-43. ©2018 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Imidazoles/pharmacology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Animals , Carcinoma, Small Cell/drug therapy , Cell Line, Tumor , Computational Biology/methods , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/drug therapy , Protein Interaction Mapping , Protein Interaction Maps , RNA, Small Interfering/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
5.
Mol Cancer Res ; 16(2): 333-344, 2018 02.
Article in English | MEDLINE | ID: mdl-29133594

ABSTRACT

The cellular and organismal phenotypic response to a small-molecule kinase inhibitor is defined collectively by the inhibitor's targets and their functions. The selectivity of small-molecule kinase inhibitors is commonly determined in vitro, using purified kinases and substrates. Recently, competitive chemical proteomics has emerged as a complementary, unbiased, cell-based methodology to define the target landscape of kinase inhibitors. Here, we evaluated and optimized a competitive multiplexed inhibitor bead mass spectrometry (MIB/MS) platform using cell lysates, live cells, and treated mice. Several clinically active kinase inhibitors were profiled, including trametinib, BMS-777607, dasatinib, abemaciclib, and palbociclib. MIB/MS competition analyses of the cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors abemaciclib and palbociclib revealed overlapping and unique kinase targets. Competitive MIB/MS analysis of abemaciclib revealed 83 target kinases, and dose-response MIB/MS profiling revealed glycogen synthase kinase 3 alpha and beta (GSK3α and ß) and Ca2+/calmodulin-dependent protein kinase II delta and gamma (CAMKIIδ and γ) as the most potently inhibited. Cell-based and in vitro kinase assays show that in contrast to palbociclib, abemaciclib directly inhibits GSK3α/ß and CAMKIIγ/δ kinase activity at low nanomolar concentrations. GSK3ß phosphorylates ß-catenin to suppress WNT signaling, while abemaciclib (but not palbociclib or ribociclib) potently activates ß-catenin-dependent WNT signaling. These data illustrate the power of competitive chemical proteomics to define kinase target specificities for kinase inhibitors, thus informing clinical efficacy, dose-limiting toxicities, and drug-repurposing efforts.Implications: This study uses a rapid and quantitative proteomics approach to define inhibitor-target data for commonly administered therapeutics and provides a cell-based alternative to in vitro kinome profiling. Mol Cancer Res; 16(2); 333-44. ©2017 AACR.


Subject(s)
Aminopyridines/administration & dosage , Benzimidazoles/administration & dosage , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Proteomics/methods , Wnt Signaling Pathway/drug effects , Aminopyridines/pharmacology , Animals , Benzimidazoles/pharmacology , Cell Line , Dose-Response Relationship, Drug , Humans , Mass Spectrometry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...