Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
AoB Plants ; 13(1): plaa071, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33542802

ABSTRACT

In response to gravistimulation under anisotropic light, tree stems showing an active cambium produce reaction wood that redirects the axis of the trees. Several studies have described transcriptomic or proteomic models of reaction wood relative to the opposite wood. However, the mechanisms leading to the formation of reaction wood are difficult to decipher because so many environmental factors can induce various signalling pathways leading to this developmental reprogramming. Using an innovative isotropic device where the phototropic response does not interfere with gravistimulation we characterized the early molecular responses occurring in the stem of poplar after gravistimulation in an isotropic environment, and without deformation of the stem. After 30 min tilting at 35° under anisotropic light, we collected the upper and lower xylems from the inclined stems. Controls were collected from vertical stems. We used a microarray approach to identify differentially expressed transcripts. High-throughput real-time PCR allowed a kinetic experiment at 0, 30, 120 and 180 min after tilting at 35°, with candidate genes. We identified 668 differentially expressed transcripts, from which we selected 153 candidates for additional Fluidigm qPCR assessment. Five candidate co-expression gene clusters have been identified after the kinetic monitoring of the expression of candidate genes. Gene ontology analyses indicate that molecular reprogramming of processes such as 'wood cell expansion', 'cell wall reorganization' and 'programmed cell death' occur as early as 30 min after gravistimulation. Of note is that the change in the expression of different genes involves a fine regulation of gibberellin and brassinosteroid pathways as well as flavonoid and phosphoinositide pathways. Our experimental set-up allowed the identification of genes regulated in early gravitropic response without the bias introduced by phototropic and stem bending responses.

2.
Plants (Basel) ; 9(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423165

ABSTRACT

Plants are subject to multiple pest attacks during their growing cycle. In order to address consumers' desire to buy healthy vegetables and fruits, i.e., without chemical residues, and to develop environment-friendly agriculture, major research efforts are being made to find alternative methods to reduce or suppress the use of chemicals. Many methods are currently being tested. Among these methods, some are being tested in order to modify plant physiology to render it less susceptible to pathogen and pest attacks by developing plant immunity. An emerging potentially interesting method that is being studied at this time is mechanical stimuli (MS). Although the number of articles on the effect of MS on plant immunity is still not large, it has been reported that several types of mechanical stimuli induce a reduction of plant susceptibility to pests for different plant species in the case of wounding and non-wounding stimuli. This mini review aims to summarize the knowledge available at this time by raising questions that should be addressed before considering MS as an operable alternative method to increase plant immunity for crop protection.

3.
PLoS One ; 14(1): e0209973, 2019.
Article in English | MEDLINE | ID: mdl-30682051

ABSTRACT

Perception of inclination in the gravity field and perception of light direction are two important environmental signals implicated in the control of plant shape and habit. However, their quantitative study in light-grown plants remains a challenge. We present a novel method here to determine the sensitivities to gravitropism and phototropism. The method combines: (i) an original experimental device of isotropic light to disentangle gravitropic and phototropic plant responses; and (ii) model-assisted phenotyping using recent models of tropism perception-the AC model for gravitropism alone and the ArC model for gravitropism combined with phototropism. We first assessed the validity of the AC and ArC models on poplar, the classical species model for woody plants. We then tested the method on three woody species contrasted by their habit and tolerance to shade: poplar (Populus tremula*alba), oak (Quercus petraea) and beech (Fagus sylvatica). The method was found to be effective to quantitatively discriminate the tested species by their ratio of tropistic sensitivities. The method thus appears as an interesting tool to quantitatively determine tropistic sensitivities, a prerequisite for assessing the role of tropisms in the control of the variability of the habit and/or tolerance to shade of woody species in the future.


Subject(s)
Fagus/physiology , Gravitropism , Phototropism , Populus/physiology , Quercus/physiology , Trees/physiology , Computer Simulation , Fagus/growth & development , Gravity Sensing , Light , Models, Biological , Populus/growth & development , Quercus/growth & development , Trees/growth & development
5.
J Proteome Res ; 14(8): 3188-203, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26112267

ABSTRACT

Trees adjust their growth following forced changes in orientation to re-establish a vertical position. In angiosperms, this adjustment involves the differential regulation of vascular cambial activity between the lower (opposite wood) and upper (tension wood) sides of the leaning stem. We investigated the molecular mechanisms leading to the formation of differential wood types through a quantitative proteomic and phosphoproteomic analysis on poplar subjected to a gravitropic stimulus. We identified and quantified 675 phosphopeptides, corresponding to 468 phosphoproteins, and 3 763 nonphosphorylated peptides, corresponding to 1 155 proteins, in the differentiating xylem of straight-growing trees (control) and trees subjected to a gravitational stimulus during 8 weeks. About 1% of the peptides were specific to a wood type (straight, opposite, or tension wood). Proteins quantified in more than one type of wood were more numerous: a mixed linear model showed 389 phosphopeptides and 556 proteins to differ in abundance between tension wood and opposite wood. Twenty-one percent of the phosphoproteins identified here were described in their phosphorylated form for the first time. Our analyses revealed remarkable developmental molecular plasticity, with wood type-specific phosphorylation events, and highlighted the involvement of different proteins in the biosynthesis of cell wall components during the formation of the three types of wood.


Subject(s)
Phosphoproteins/metabolism , Plant Proteins/metabolism , Populus/metabolism , Proteome/metabolism , Proteomics/methods , Wood/metabolism , Amino Acid Sequence , Cluster Analysis , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Gravitation , Gravitropism , Mass Spectrometry , Molecular Sequence Data , Peptides/genetics , Peptides/metabolism , Phosphopeptides/genetics , Phosphopeptides/metabolism , Phosphoproteins/genetics , Plant Proteins/classification , Plant Proteins/genetics , Populus/genetics , Proteome/classification , Proteome/genetics , Signal Transduction/genetics , Wood/genetics , Xylem/genetics , Xylem/metabolism
6.
Front Plant Sci ; 6: 52, 2015.
Article in English | MEDLINE | ID: mdl-25755656

ABSTRACT

As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However, some important aspects of mechanosensing are often neglected. (i) What are the mechanical characteristics of different loads and how are loads distributed within different organs? (ii) What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? (iii) How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem (SAM) morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work.

7.
J Theor Biol ; 273(1): 115-29, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21187101

ABSTRACT

Trees are able to maintain or modify the orientation of their axes (trunks or branches) by tropic movements. For axes in which elongation is achieved but cambial growth active, the tropic movements are due to the production of a particular wood, called reaction wood which is prestressed within the growing tree. Several models have been developed to simulate the gravitropic response of axes in trees due to the formation of reaction wood, all within the frame of linear elasticity and considering the wood maturation as instantaneous. The effect viscoelasticity of wood has, to our knowledge, never been considered. The TWIG model presented in this paper aims at simulating the gravitropic movement of a tree axis at the intra-annual scale. In this work we studied both the effect of a non-instantaneous maturation process and of viscoelasticity. For this purpose, we considered the elastic case with maturation considered as an instantaneous process as the reference. The introduction of viscoelasticity in TWIG has been done by coupling TWIG to a model developed for bridges. Indeed from a purely mechanical point of view, bridges and trees are very similar: they are structures which are built in stages, they are made of several materials (composite structures), their materials are prestressed (wood is prestressed during the maturation process as a result of polymerisation of lignin and cellulose to form the secondary cell wall and concrete is prestressed during drying). Simulations gave evidence that the reorientation process of axes can be significantly influenced by the kinetics of maturation. Moreover the model has now to be tested with more experimental data of wood viscoelasticity but it appears that in the range of a relaxation time from 0 to 50 days, viscoelasticity has an important effect on the evolution of tree shape as well as on the values of prestresses.


Subject(s)
Computer Simulation , Elasticity , Gravitropism/physiology , Models, Biological , Trees/physiology , Elastic Modulus/physiology , Kinetics , Populus/growth & development , Populus/physiology , Stress, Mechanical , Time Factors , Trees/growth & development , Viscosity , Wood/physiology
8.
J Exp Bot ; 61(9): 2403-12, 2010 May.
Article in English | MEDLINE | ID: mdl-20363866

ABSTRACT

During their development, plants are subjected to repeated and fluctuating wind loads, an environmental factor predicted to increase in importance by scenarios of global climatic change. Notwithstanding the importance of wind stress on plant growth and development, little is known about plant acclimation to the bending stresses imposed by repeated winds. The time-course of acclimation of young poplars (Populus tremula L.xP. alba L.) to multiple stem bendings is studied here by following diameter growth and the expression of four genes PtaZFP2, PtaTCH2, PtaTCH4, and PtaACS6, previously described to be involved in the mechanical signalling transduction pathway. Young trees were submitted either to one transient bending per day for several days or to two bendings, 1-14 days apart. A diminution of molecular responses to subsequent bending was observed as soon as a second bending was applied. The minimum rest periods between two successive loadings necessary to recover a response similar to that observed after a single bending, were 7 days and 5 days for growth and molecular responses, respectively. Taken together, our results show a desensitization period of a few days after a single transitory bending, indicating a day-scale acclimation of sensitivity to the type of wind conditions plants experience in their specific environment. This work establishes the basic kinetics of acclimation to low bending frequency and these kinetic analyses will serve as the basis of ongoing work to investigate the molecular mechanisms involved. Future research will also concern plant acclimation to higher wind frequencies.


Subject(s)
Acclimatization , Gene Expression Regulation, Plant , Populus/chemistry , Populus/physiology , Biomechanical Phenomena , Kinetics , Mechanotransduction, Cellular , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics
9.
Ann Bot ; 105(2): 341-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19995809

ABSTRACT

BACKGROUND AND AIMS: In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. METHODS: Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. KEY RESULTS: The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. CONCLUSIONS: This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.


Subject(s)
Trees/physiology , Biomechanical Phenomena , Tropical Climate
10.
Plant Physiol ; 151(1): 223-32, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19571311

ABSTRACT

Mechanical signals are important factors that control plant growth and development. External mechanical loadings lead to a decrease in elongation and a stimulation of diameter growth, a syndrome known as thigmomorphogenesis. A previous study has demonstrated that plants perceive the strains they are subjected to and not forces or stresses. On this basis, an integrative biomechanical model of mechanosensing was established ("sum-of-strains model") and tested on tomato (Solanum lycopersicum) elongation but not for local responses such as diameter growth or gene expression. The first aim of this interdisciplinary work was to provide a quantitative study of the effect of a single transitory bending on poplar (Populus tremula x alba) diameter growth and on the expression level of a primary mechanosensitive transcription factor gene, PtaZFP2. The second aim of this work was to assess the sum-of-strains model of mechanosensing on these local responses. An original bending device was built to study stem responses according to a controlled range of strains. A single bending modified plant diameter growth and increased the relative abundance of PtaZFP2 transcripts. Integrals of longitudinal strains induced by bending on the responding tissues were highly correlated to local plant responses. The sum-of-strains model of mechanosensing established for stem elongation was thus applicable for local responses at two scales: diameter growth and gene expression. These novel results open avenues for the ordering of gene expression profiles as a function of the intensity of mechanical stimulation and provide a generic biomechanical core for an integrative model of thigmomorphogenesis linking gene expression with growth responses.


Subject(s)
Gene Expression Regulation, Plant/physiology , Mechanotransduction, Cellular/physiology , Plant Proteins/metabolism , Populus/growth & development , Populus/metabolism , Transcription Factors/metabolism , Plant Proteins/genetics , Time Factors , Transcription Factors/genetics , Transcription, Genetic
11.
Physiol Plant ; 136(2): 193-208, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19453506

ABSTRACT

Gravity is a constant force guiding the direction of plant growth. In young poplar stem, reorientation of the apical region is mainly obtained by differential growth of elongating primary tissues. At the base, where elongation is achieved but where the cambium is active, reorientation is due to asymmetrical formation of reaction wood. After 45 min of gravistimulation, the stem showed no reorientation, but 1 week later, reaction wood was observed at the base of the stem. To determine the molecular mechanisms taking place at the top and base of the stem, after 45 min or 1 week of inclination, the changes induced in protein accumulation were studied by two-dimensional polyacrylamide gel electrophoresis and quantitatively analyzed using image analysis software. Around 300 protein spots were reproducibly detected and analyzed. Forty percent of these proteins showed significant changes after inclination. Mass spectrometry analysis of 135 spots led to the identification of 60 proteins involved in a wide range of activities and metabolisms. Very different patterns of protein expression were obtained according to conditions tested, highlighting the complexity of gravitropic responses. Our results suggest that primary and secondary tissues present specific mechanisms to sense reorientation and to respond to inclination. Some selected proteins are discussed.


Subject(s)
Gravitropism/physiology , Plant Proteins/metabolism , Plant Stems/metabolism , Populus/physiology , Proteomics , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Plant , Plant Stems/physiology , Populus/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
12.
Tree Physiol ; 29(1): 125-36, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19203938

ABSTRACT

In plants, mechanoperception and transduction of mechanical signals have been studied essentially in Arabidopsis thaliana L. and Lycopersicon esculentum L. plants, i.e., in nonwoody plants. Here, we have described the isolation of both the full-length cDNA and the regulatory region of PtaZFP2, encoding a member of Cys2/His2 zinc finger protein (ZFP) family in Populus tremula L. x Populus alba L. Time course analysis of expression demonstrated that PtaZFP2 mRNA accumulated as early as 5 min in response to a controlled stem bending and is restricted to the organ where the mechanical stimulus is applied. The real-time quantitative Reverse Transcriptase Polymerase Chain Reaction experiments showed that PtaZFP2 was also rapidly up-regulated in poplar stems in response to gravitropism suggesting that PtaZFP2 is induced by different mechanical signals. Abundance of PtaZFP2 transcripts also increased highly in response to wounding and to a weaker extent to salt treatment and cold, which is consistent with the numerous putative cis-elements found in its regulatory region. As in other species, these data suggest that Cys2/His2 ZFPs could function in poplar as key transcriptional regulators in the acclimation response to different environmental factors.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Plant , Genes, Plant , Mechanotransduction, Cellular , Populus/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Base Sequence , Cysteine , DNA, Complementary/isolation & purification , Gene Expression , Gravitropism/genetics , Gravitropism/physiology , Histidine , Mechanical Phenomena , Molecular Sequence Data , Plant Stems , Populus/metabolism , Populus/physiology , Promoter Regions, Genetic , RNA, Messenger/metabolism , Salt Tolerance , Stress, Physiological , Trees , Zinc Fingers/physiology
13.
Biomacromolecules ; 9(8): 2194-201, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18636773

ABSTRACT

The feasibility of Fourier transform infrared (FT-IR) microscopy to monitor in situ the enzymatic degradation of wood was investigated. Cross-sections of poplar wood were treated with cellulase Onozuka RS within a custom-built fluidic cell. Light-optical micrographs and FT-IR spectra were acquired in situ from normal and tension wood fibers. Light-optical micrographs showed almost complete removal of the gelatinous (G) layer in tension wood. No structural and spectral changes were observed in the lignified cell walls. The accessibility of cellulose within the lignified cell wall was found to be the main limiting factor, whereas the depletion of the enzyme due to lignin adsorption could be ruled out. The fast, selective hydrolysis of the crystalline cellulose in the G-layer, even at room temperature, might be explained by the gel-like structure and the highly porous surface. Young plantation grown hardwood trees with a high proportion of G-fibers thus represent an interesting resource for bioconversion to fermentable sugars in the process to bioethanol.


Subject(s)
Biotechnology/methods , Cellulase/chemistry , Populus/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Biotechnology/instrumentation , Cellulose/chemistry , Crystallization , Ethanol/chemistry , Fermentation , Hydrolysis , Light , Optics and Photonics , Porosity , Temperature , Wood/analysis
14.
Plant J ; 56(4): 531-8, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18643995

ABSTRACT

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.


Subject(s)
Cell Wall/physiology , Microfibrils/physiology , Populus/physiology , Stress, Mechanical , Elasticity , Microscopy, Electron, Scanning , Scattering, Radiation , Tensile Strength
15.
Ann Bot ; 101(9): 1421-32, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18448448

ABSTRACT

BACKGROUND AND AIMS: Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees. METHODS: Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device. KEY RESULTS: Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot-root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain. CONCLUSIONS: This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests).


Subject(s)
Biomass , Prunus/growth & development , Trees/growth & development , Stress, Mechanical
16.
Plant Cell Environ ; 31(6): 715-26, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18208513

ABSTRACT

Plants respond to environmental mechanical stimulation, such as wind, by modifying their growth and development. To study the molecular effects of stem bending on 3-week-old walnut trees, a cDNA-AFLP approach was developed. This study allowed the identification of a cDNA, known as Jr-ZFP2, encoding a Cys2/His2-type two-zinc-fingered transcription factor. Reverse transcriptase-polymerase chain reaction analysis confirmed that Jr-ZFP2 mRNA accumulation is rapidly and transiently induced after mechanical stimulation. After bending, Jr-ZFP2 transcript increase was restricted to the stem, the organ where the mechanical solicitation was applied. Furthermore, other abiotic factors, such as cold or salt, did not modify Jr-ZFP2 mRNA accumulation in walnut stems under our experimental conditions, whereas growth studies demonstrated that salt stress was actually perceived by the plants. These results suggest that the regulation of Jr-ZFP2 expression is more sensitive to mechanical stimulus. This gene will be a good marker for studying the early stages of mechanical perception in woody plants.


Subject(s)
Gene Expression Regulation, Plant/physiology , Juglans/metabolism , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Amino Acid Sequence , Biomechanical Phenomena , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Juglans/genetics , Molecular Sequence Data , Plant Proteins/genetics , Plant Stems/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time
17.
J Exp Bot ; 58(13): 3537-47, 2007.
Article in English | MEDLINE | ID: mdl-18057035

ABSTRACT

The aim of this work was to study the variability of physiological responses to bending and the relationship with hydraulic conductance of the sap pathway to the laterals for five apple genotypes. The study focuses on the fate of the laterals. The genetic variability of bending can have two sources: a genetic variability of stem geometry which can lead to differences in mechanical state; and a genetic variability of sensitivity to bending. Since the aim was to check if some genetic variability of sensitivity to bending exists, the genetic variability of shoot geometry was taken into account. To do so, bending was controlled by imposing different bending intensities using guides of different curvature conferring a similar level of deformation to the five genotypes. Bending was done either in the proximal zone or in the distal zone of shoots, in June and in the following winter, respectively. A Principal Component Analysis comparing upright and bent shoots revealed that bending in the proximal zone stimulated vegetative growth of buds which would otherwise stay latent. A second Principal Component Analysis restricted to bent shoots revealed that bending increased the abortion of laterals in the lower face of the shoots. The abortion phenomenon was to the detriment of sylleptic laterals or of inflorescence, depending on the genotype. There was a strong effect of position around the shoot on within-shoot hydraulics. Hydraulic conductance was significantly decreased in the lower face of the shoot bent in winter. This result suggested a causal relationship between this phenomenon and lateral abortion.


Subject(s)
Malus/growth & development , Malus/genetics , Plant Shoots/growth & development , Biomechanical Phenomena , Genotype , Malus/anatomy & histology , Plant Shoots/anatomy & histology
18.
Plant Physiol ; 144(2): 1166-80, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17468227

ABSTRACT

In tree trunks, the motor of gravitropism involves radial growth and differentiation of reaction wood (Archer, 1986). The first aim of this study was to quantify the kinematics of gravitropic response in young poplar (Populus nigra x Populus deltoides, 'I4551') by measuring the kinematics of curvature fields along trunks. Three phases were identified, including latency, upward curving, and an anticipative autotropic decurving, which has been overlooked in research on trees. The biological and mechanical bases of these processes were investigated by assessing the biomechanical model of Fournier et al. (1994). Its application at two different time spans of integration made it possible to test hypotheses on maturation, separating the effects of radial growth and cross section size from those of wood prestressing. A significant correlation between trunk curvature and Fournier's model integrated over the growing season was found, but only explained 32% of the total variance. Moreover, over a week's time period, the model failed due to a clear out phasing of the kinetics of radial growth and curvature that the model does not take into account. This demonstrates a key role of the relative kinetics of radial growth and the maturation process during gravitropism. Moreover, the degree of maturation strains appears to differ in the tension woods produced during the upward curving and decurving phases. Cell wall maturation seems to be regulated to achieve control over the degree of prestressing of tension wood, providing effective control of trunk shape.


Subject(s)
Gravitropism/physiology , Populus/growth & development , Wood/growth & development , Biomechanical Phenomena , Models, Biological
19.
Am J Bot ; 94(10): 1583-93, 2007 Oct.
Article in English | MEDLINE | ID: mdl-21636357

ABSTRACT

Tree buckling risk (actual height/critical buckling height) is an important biomechanical trait of plant growth strategies, and one that contributes to species coexistence. To estimate the diversity of this trait among wide samples, a method that minimizes damage to the plants is necessary. On the basis of the rarely used, complete version of Greenhill's model (1881, Proceedings of the Cambridge Philosophical Society 4(2): 65-73), we precisely measured all the necessary parameters on a sample of 236 saplings of 16 species. Then, using sensitivity (variance) analysis, regressions between successive models for risk factors and species ranks and the use of these models on samples of self- and nonself-supporting saplings, we tested different degrees of simplification up to the most simple and widely used formula that assumes that the tree is a cylindrical homogeneous pole. The size factor had the greatest effect on buckling risk, followed by the form factor and the modulus of elasticity of the wood. Therefore, estimates of buckling risk must consider not only the wood properties but especially the form factor. Finally, we proposed a simple but accurate method of assessing tree buckling risk that is applicable to a wide range of samples and that requires mostly nondestructive measurements.

20.
Am J Bot ; 93(10): 1477-89, 2006 Oct.
Article in English | MEDLINE | ID: mdl-21642095

ABSTRACT

Self-supporting plant stems are slender, erect structures that remain standing while growing in highly variable mechanical environments. Such ability is not merely related to an adapted mechanical design in terms of material-specific stiffness and stem tapering. As many terrestrial standing animals do, plant stems regulate posture through active and coordinated control of motor systems and acclimate their skeletal growth to prevailing loads. This analogy probably results from mechanical challenges on standing organisms in an aerial environment with low buoyancy and high turbulence. But the continuous growth of plants submits them to a greater challenge. In response to these challenges, land plants implemented mixed skeletal and motor functions in the same anatomical elements. There are two types of kinematic design: (1) plants with localized active movement (arthrophytes) and (2) plants with continuously distributed active movements (contortionists). The control of these active supporting systems involves gravi- and mechanoperception, but little is known about their coordination at the whole plant level. This more active view of the control of plant growth and form has been insufficiently considered in the modeling of plant architecture. Progress in our understanding of plant posture and mechanical acclimation will require new biomechanical models of plant architectural development.

SELECTION OF CITATIONS
SEARCH DETAIL
...