Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Toxicol Lett ; 394: 66-75, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423482

ABSTRACT

The placenta is a membrane that separates the fetus from the maternal circulation, and in addition to protecting the fetus, plays a key role in fetal growth and development. With increasing drug use in pregnancy, it is imperative that reliable models of estimating placental permeability and safety be established. In vitro methods and animal models such as rodent placenta are limited in application since the species-specific nature of the placenta prevents meaningful extrapolations to humans. In this regard, in silico approaches such as quantitative structure-property relationships (QSPRs) are useful alternatives. However, despite evidence that drug transport across the placenta is stereoselective (i.e., governed by the spatial arrangement of the atoms in a molecule), many QSPR models for placental transfer have been built using 2D descriptors that do not account for chirality and stereochemistry. In this study, we apply a chirality-sensitive and proven QSPR methodology titled "EigenValue ANalySis" (EVANS) to build QSPR models for placental transfer. We deploy EVANS along with robust machine learning algorithms to build (i) regression models on a dataset of environmental chemicals (dataset PD I) followed by (ii) classification models on a set of drug-like compounds (dataset PD II). The best models were found to achieve state-of-the-art performance, with the support vector machine algorithm returning rtrain2=0.85,rtest2=0.75 for PD I, and the logistic regression algorithm giving accuracy 0.88 and F1 score 0.93 for PD II. The best models were interpreted with the Shapley Additive Explanations paradigm, and it was found that autocorrelation descriptors are crucial for modelling placental permeability. In conclusion, we demonstrate the need of a chirality-sensitive approach for modelling placental transfer of chemicals, and present two predictive QSPR models that may reliably be used for prediction of placental transfer.


Subject(s)
Maternal-Fetal Exchange , Placenta , Animals , Pregnancy , Humans , Female , Placenta/metabolism , Fetus , Biological Transport , Quantitative Structure-Activity Relationship
2.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38140814

ABSTRACT

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Subject(s)
A Kinase Anchor Proteins , Chlamydomonas reinhardtii , Humans , A Kinase Anchor Proteins/chemistry , A Kinase Anchor Proteins/metabolism , Cilia/metabolism , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Amino Acid Sequence , Cyclic AMP-Dependent Protein Kinases/metabolism , Microtubules/metabolism
3.
Int J Biol Macromol ; 243: 125238, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37290545

ABSTRACT

Major challenges in current cancer chemotherapy include drug resistance, low efficacy and non-selectivity, resulting in undesirable side effects. In this study, we demonstrate a solution to these challenges that involves a dual targeting approach for tumors that overexpress CD44 receptors. The approach employs a nano-formulation (tHAC-MTX nano assembly), fabricated from hyaluronic acid (HA), the natural ligand for CD44, conjugated with methotrexate (MTX) and complexed with the thermoresponsive polymer 6-O-carboxymethylchitosan (6-OCMC) graft poly(N-isopropylacrylamide) [6-OCMC-g-PNIPAAm]. The thermoresponsive component was designed to have a lower critical solution temperature of 39 °C (the temperature of tumor tissues). In-vitro drug release studies reveal faster release of the drug at the higher temperatures of the tumor tissue likely due to the conformation changes in the thermoresponsive component of the nano assembly. Drug release was also enhanced in the presence of hyaluronidase enzyme. Higher cellular uptake and greater cytotoxicity of the nanoparticles were demonstrated in cancer cells that overexpress CD44 receptors suggesting a receptor binding and cellular uptake mechanism. Such nano-assemblies which incorporate multiple targeting mechanisms have the potential to improve efficacy and decrease side effects of cancer chemotherapy.


Subject(s)
Chitosan , Nanoparticles , Neoplasms , Humans , Methotrexate/pharmacology , Methotrexate/chemistry , Hyaluronic Acid/chemistry , Neoplasms/drug therapy , Nanoparticles/chemistry
4.
Curr Med Chem ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37138435

ABSTRACT

Cancer, the second leading cause of death worldwide, is a major health problem. Chemotherapy, radiation therapy and surgery are current treatments for cancer. Most anticancer drugs have severe toxic effects and are required to be administered in cycles to reduce toxicity and prevent resistance. Plant-based drugs have shown a potential for treatment of cancer, and various plant secondary metabolites have shown promising antitumor activity against several cancer cell lines, such as leukemia, colon cancer, prostate cancer, breast cancer and lung cancer. Vincristine, etoposide, topotecan and paclitaxel, which are of natural origin, are successfully used in clinical practice, and this has generated interest in natural compounds as anticancer agents. Some phytoconstituents like curcumin, piperine, allicin, quercetin and resveratrol have been extensively researched and reviewed. In the current study, we have reviewed several plants like Athyrium hohenackerianum, Aristolochia baetica, Boswellia serrata, Panax ginseng, Berberis vulgaris, Tanacetum parthenium, Glycine max, Combretum fragrans, Persea americana, Raphanus sativus, Camellia sinensis, and Nigella sativa for their source, key phytoconstituents, and anticancer activity along with their toxicity profile. Few phytoconstituents like boswellic acid, sulforaphane and ginsenoside showed excellent anticancer activity compared to standard drugs and are potential clinical candidates.

5.
Mol Divers ; 27(4): 1675-1687, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36219381

ABSTRACT

Optimizing the pharmacokinetics (PK) of a drug candidate to support oral dosing is a key challenge in drug development. PK parameters are usually estimated from the concentration-time profile following intravenous administration; however, traditional methods are time-consuming and expensive. In recent years, quantitative structure-pharmacokinetic relationship (QSPKR), an in silico tool that aims to develop a mathematical relationship between the structure of a molecule and its PK properties, has emerged as a useful alternative to experimental testing. Due to the complex nature of the various processes involved in dictating the fate of a drug, the development of adequate QSPKR models that can be used in real-world pre-screening situations has proved challenging. Given the crucial role played by a molecule's ionization state in determining its PK properties, this work aims to build predictive QSPKR models for PK parameters in humans using an ionization state-based strategy. We divide a high-quality dataset into clusters based on ionization state at physiological pH and build global and ion subset-based 'local' models for three major PK parameters: plasma clearance (CL), steady-state volume of distribution (VDss), and half-life (t1/2). We use a robust methodology developed in our lab entitled 'EigenValue ANalySis' that accounts for the stereospecificity in drug disposition and use the support vector machine algorithm for model building. Our findings suggest that categorizing compounds in accordance with ionization state does not result in improved QSPKR models. The narrow ranges in the endpoints along with redundancies in the data adversely affect the ion subset-based QSPKR models. We suggest alternative approaches such as elimination route-based models that account for drug-transporter interactions for CL and chemotype-specific QSPKR for VDss.


Subject(s)
Algorithms , Quantitative Structure-Activity Relationship , Humans , Pharmaceutical Preparations , Models, Biological
6.
ACS Omega ; 7(21): 18094-18102, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664614

ABSTRACT

It has always been a challenge to develop interventional therapies for Mycobacterium tuberculosis. Over the years, several attempts at developing such therapies have hit a dead-end owing to rapid mutation rates of the tubercular bacilli and their ability to lay dormant for years. Recently, cytochrome bcc complex (QcrB) has shown some promise as a novel target against the tubercular bacilli, with Q203 being the first molecule acting on this target. In this paper, we report the deployment of several ML-based approaches to design molecules against QcrB. Machine learning (ML) models were developed based on a data set of 350 molecules using three different sets of molecular features, i.e., MACCS keys, ECFP6 fingerprints, and Mordred descriptors. Each feature set was trained on eight ML classifier algorithms and optimized to classify molecules accurately. The support vector machine-based classifier using the ECFP6 feature set was found to be the best classifier in this study. Further, screening of the known imidazopyridine amide inhibitors demonstrated that the model correctly classified the most potent molecules as actives, hence validating the model for future applications.

7.
Curr Drug Deliv ; 20(1): 8-30, 2022.
Article in English | MEDLINE | ID: mdl-35400344

ABSTRACT

Polymeric drug conjugates (PDCs) for cancer therapy have been a hot research topic for the past three decades. Successful examples of PDC conjugates have demonstrated sustained drug release action with decreased systemic toxicity and enhanced tumor retention effect (EPR) via active as well as passive targeting mechanisms. Therefore, the PDC approach has now become a keystone of the drug delivery system for cancer and other diseases. In recent years, several PDCs have successfully made up to the clinical trials. The approach aids targeted delivery of the anticancer drugs to the tumor site without disturbing the healthy cells. The selection of the over-expressed receptor and the receptor-ligand plays a vital role in designing the receptor-targeting PDC so that it is able to distinguish between the healthy cell and the tumor cell. Continuous efforts are being made in research and development toward an active targeted PDC delivery system to revolutionize cancer treatment despite the controversy built due to heterogeneity in tumor models. This review highlights the chemistry aspects involved in the preparation of PDCs that deal with novel molecular tumor targets and strategies used for the development of targeted PDCs for delivering the drug payload via active or passive targeting. Furthermore, it sheds light on the challenges faced by targeted PDCs as novel drug delivery systems.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Polymers/chemistry , Drug Delivery Systems , Neoplasms/drug therapy , Neoplasms/pathology , Pharmaceutical Preparations
8.
J Chromatogr A ; 1669: 462967, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35305457

ABSTRACT

Peptide therapeutics plays a prominent role in medical practice. Both peptides and proteins have been used in several disease conditions like diabetes, cancer, bacterial infections etc. The optimization of a peptide library is a time consuming and expensive chore. The tools of computational chemistry offer a way to optimize the properties of peptides. Quantitative Structure Retention (Chromatographic) Relationships (QSRR) is a powerful tool which statistically derives relationships between chromatographic parameters and descriptors that characterize the molecular structure of analytes. In this paper, we show how Comparative Protein ModelingQuantitative Structure Retention Relationship (acronym ComProM-QSRR) can be used to predict the retention time of peptide sequences. This formalism is founded on our earlier published QSAR methodology HomoSAR. ComProM-QSRR can recognize and distinguish the contribution of amino acids at specific positions in the peptide sequences to the retention phenomena through their related physicochemical properties. This study firmly establishes the fact that this approach can be pragmatically used to predict the retention time to all classes of peptides regardless of size or sequence.


Subject(s)
Proteins , Quantitative Structure-Activity Relationship , Amino Acid Sequence , Chromatography, High Pressure Liquid/methods , Peptides/chemistry
9.
Mol Divers ; 26(1): 73-96, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33385288

ABSTRACT

N-furfuryl piperazine ureas disclosed by scientists at GSK Tres Cantos were chosen as antimycobacterial hits from a phenotypic whole-cell screen. Bioisosteric replacement of the furan ring in the GSK Tres Cantos molecules with a phenyl ring led to molecule (I) with an MIC of 1 µM against Mtb H37Rv, low cellular toxicity (HepG2 IC50 ~ 80 µM), good DMPK properties and specificity for Mtb. With the aim of delineating the SAR associated with (I), fifty-five analogs were synthesized and screened against Mtb. The SAR suggests that the piperazine ring, benzyl urea and piperonyl moieties are essential signatures of this series. Active compounds in this series are metabolically stable, have low cellular toxicity and are valuable leads for optimization. Molecular docking suggests these molecules occupy the Q0 site of QcrB like Q203. Bioisosteric replacement of N-furfuryl piperazine-1-carboxamides yielded molecule (I) a novel lead with satisfactory PD, metabolism, and toxicity profiles.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Piperazines/pharmacology , Structure-Activity Relationship , Urea/pharmacology
10.
Chem Biol Interact ; 351: 109758, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34826397

ABSTRACT

We report the synthesis and in vitro evaluation of 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one derivatives against Leishmania donovani. Amongst the compound library synthesized, molecules 3d, 3f, 3h, 3i, 3l, and 3m demonstrated substantial dose-dependent killing of the promastigotes. Their IC50 values range from 55.0 to 77.0 µg/ml, with 3m (IC50 55.75 µg/ml) being equipotent with amphotericin B (IC50 50.0 µg/ml, used as standard). The most active compound 3m, is metabolically stable in rat liver microsomes. Furthermore, the molecules are highly specific against leishmania as shown by their weak antibacterial and antifungal activity. In vitro cytotoxicity studies show the compounds lack any cytotoxicity. Furthermore, molecular modeling studies show plausibility of binding to Leishmania donovani topoisomerase 1 (LdTop1). Structure activity relationships reveal bulky substitutions on the pyridone nitrogen are well-tolerated, and such compounds have better binding affinity. Intramolecular hydrogen bonds confer some rigidity to the molecules, rendering a degree of planarity akin to topotecan. Taken together, we emphasis the merits of molecules possessing the 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-one skeleton as potential antileishmanial agents warranting further investigation.


Subject(s)
Pyridones/pharmacology , Trypanocidal Agents/pharmacology , Animals , DNA Topoisomerases, Type I/metabolism , Drug Stability , HEK293 Cells , Humans , Leishmania donovani/drug effects , Leishmania donovani/enzymology , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Parasitic Sensitivity Tests , Protein Binding , Pyridones/chemical synthesis , Pyridones/metabolism , Rats , Structure-Activity Relationship , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/metabolism , Topoisomerase I Inhibitors/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism
11.
J Pharm Sci ; 111(3): 810-817, 2022 03.
Article in English | MEDLINE | ID: mdl-34808215

ABSTRACT

Silver nanoparticles have attracted wide interest in medicine on account of their antibacterial activity. We report in this paper, the antibacterial activity and biocompatibility of a temperature responsive topical film fabricated from pullulan-g-pNIPAM and impregnated with two different concentrations (15 ppm and 30 ppm) of silver nanoparticles (Ag-NPs). The release of silver from the film under the influence of temperature above the LCST has been studied and the in vitro release profile of the films has been compared with a marketed silver nano formulation, 'Meganano gel'. The release of silver from the films has a distinctive profile characterized by a sustained release over a period of 48 hrs, which is comparable to the marketed formulation. The films exhibit excellent swelling properties, making them ideal materials for absorption of exudates from wounds. The antibacterial activity of the films has been established at physiological temperature against gram-positive S. aureus and gram-negative E. coli and compared with the marketed formulation. A cytotoxicity evaluation on HeK293 cells has demonstrated their biocompatibility. The nanocomposite films are thus a new therapeutic device for management of non-healing wounds being constructed from temperature responsive polymers that release Ag-NPs when the temperature of the wound exudate is slightly higher than normal.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Bandages , Escherichia coli , HEK293 Cells , Humans , Staphylococcus aureus , Temperature
12.
Chem Biol Drug Des ; 96(6): 1408-1417, 2020 12.
Article in English | MEDLINE | ID: mdl-32569448

ABSTRACT

Microbial resistance to conventional antibiotics has led to a surge in antimicrobial peptide (AMP) rational design initiatives that rely heavily on algorithms with good prediction accuracy and sensitivity. We present a quantitative structure-activity relationship (QSAR) approach for predicting activity of cathelicidins, an AMP family with broad-spectrum activity. The best multiple linear regression model built against Escherichia coli ATCC 25922 could accurately predict activity of three rationally designed peptides CP, DP, and Mapcon, having high sequence similarity. On further experimental validation of the rationally designed peptides, CP was found to exhibit high antimicrobial activity with negligible hemolysis. Here, we provide CP, an AMP with potential therapeutic applications and a family-based QSAR model for AMP prediction.


Subject(s)
Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Amino Acid Sequence , Escherichia coli/drug effects , Hemolysis/drug effects , Humans , Klebsiella pneumoniae/drug effects , Models, Molecular , Pseudomonas aeruginosa/drug effects , Quantitative Structure-Activity Relationship , Reproducibility of Results , Structure-Activity Relationship
13.
Med Chem ; 16(2): 212-228, 2020.
Article in English | MEDLINE | ID: mdl-31146672

ABSTRACT

BACKGROUND: Novel 4-[3-(6/7/8-Substituted 4-Oxo-4H-chromen-3-yl)acryloyl]phenylboronic acid derivatives (5a-h) as well as other 6/7/8-substituted-3-(3-oxo-3-(4-substitutedphenyl) prop-1-enyl)-4H-chromen-4-one derivatives (3a-u) have been designed as p53-MDM2 pathway inhibitors and reported to possess significant cytotoxic properties against several cancer cell lines. OBJECTIVES: The current project aims to frame the structure-anticancer activity relationship of chromen-4-on-3-yl chalcones (3a-u/5a-h). In addition, docking studies were performed on these chromeno-chalcones in order to have an insight into their interaction possibilities with MDM2 protein. METHODS: Twenty-nine chromen-4-on-3-yl chalcone derivatives (3a-u/5a-h) were prepared by utilizing silica supported-HClO4 (green route with magnificent yield) and tested against four cancer cell lines (HCT116, MCF-7, THP-1, NCIH322). RESULTS: Among the series 3a-u, compound 3b exhibited the highest anticancer activity (with IC50 values ranging from 8.6 to 28.4 µM) overall against tested cancer cell lines. Interestingly, para- Boronic acid derivative (5b) showed selective inhibition against colon cancer cell line, HCT-116 with an IC50 value of 2.35 µM. Besides the emblematic hydrophobic interactions of MDM2 inhibitors, derivative 5b was found to exhibit extra hydrogen bonding with GLN59 and GLN72 residues of MDM2 in molecular dynamics (MD) simulation. All the compounds were virtually nontoxic against normal fibroblast cells. CONCLUSION: Novel compounds were obtained with good anticancer activity especially 6- Chlorochromen-4-one substituted boronic acid derivative 5b. The molecular docking study proposed good activity as a MDM-2 inhibitor suggesting hydrophobic as well as hydrogen bonding interactions with MDM2.


Subject(s)
Benzopyrans/chemistry , Boronic Acids/chemistry , Chalcones/chemical synthesis , Chalcones/pharmacology , Drug Design , Molecular Docking Simulation , Proto-Oncogene Proteins c-mdm2/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chalcones/chemistry , Chalcones/metabolism , Chemistry Techniques, Synthetic , Drug Screening Assays, Antitumor , Humans , Molecular Dynamics Simulation , Protein Conformation , Proto-Oncogene Proteins c-mdm2/chemistry , Structure-Activity Relationship
14.
Med Chem ; 15(1): 28-37, 2019.
Article in English | MEDLINE | ID: mdl-29793410

ABSTRACT

BACKGROUND: The treatment of a bacterial infection when the bacterium is growing in a biofilm is a vexed issue. This is because the bacteria in a biofilm behaves differently compared to the individual planktonic free-form. As a result, traditional antibacterial agents lose their activity. OBJECTIVE: Presently, there are not many drugs that are effective against bacteria growing in biofilms. Based on literature reports, we have sought to develop novel derivatives of 4-hydroxy-2- pyridone as both antimycobacterial and antibiofilm agents. METHODS: The pyridone derivatives were synthesized by reacting 4-hydroxy-6-methyl-2H-pyran-2- one with appropriate amines and followed by reaction with substituted phenyl isocyanates as reported in the literature. RESULTS: Four compounds in this series significantly inhibit the growth and formation of biofilm by Mycobacterium smegmatis (mc2 155 strain) at 50 µg/ml. Further, in silico evaluation of the ADME parameters shows that these compounds possess good drug-like properties and have the potential to be developed both as antibiofilm and as oral antimycobacterial agents. CONCLUSION: This finding is of significance as presently very few small molecules are known to inhibit biofilm formation in mycobacteria. These compounds are unique in the sense that they are more potent against Mycobacterium smegmatis in the biofilm state compared to the planktonic form.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Mycobacterium smegmatis/drug effects , Pyridones/pharmacology , Pyrones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Microbial Sensitivity Tests , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Pyrones/chemical synthesis , Pyrones/pharmacokinetics
15.
Curr Drug Deliv ; 15(4): 520-531, 2018.
Article in English | MEDLINE | ID: mdl-29165075

ABSTRACT

BACKGROUND: Asenapine is an anti-psychotic agent approved by the US-FDA for treatment of acute schizophrenia and manic or bipolar I disorder in adults. It is poorly absorbed when administered orally, hence exhibits poor oral bioavailability, which limits its use in clinical practice. OBJECTIVE: Enhancement in solubility of asenapine through complexation with three different cyclodextrins, viz. ßCD, HPßCD and sulphobutylether-ßCD (Captisol®) was attempted and compared due to its poor bioavailability. METHOD: Kneading method was used for preparation of inclusion complexes which were characterized by FTIR, DSC, and XRD methods. Extent of binding and stability of the 1:1 inclusion complexes were evaluated by molecular modelling and phase solubility studies. Pharmacokinetic studies were also carried out of these inclusion complexes. RESULTS: Captisol® complex was the most stable amongst all complexes showing 4.9 times solubility enhancement of asenapine and 96% drug release at the end of 60 min, whereas asenapine maleate (uncomplexed drug) was released completely at the end of 120min. The Cmax and AUC values of Captisol® asenapine complex (AS-Captisol complex) were 2.8 and 2.3 times higher than the uncomplexed drug. CONCLUSION: This study thus demonstrated that Captisol® inclusion complex is an effective strategy for solubility and bioavailability enhancement of asenapine.


Subject(s)
Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Drug Compounding/methods , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/pharmacokinetics , Animals , Antipsychotic Agents/chemistry , Dibenzocycloheptenes , Drug Liberation , Drug Stability , Heterocyclic Compounds, 4 or More Rings/chemistry , Male , Models, Molecular , Molecular Dynamics Simulation , Rats , Solubility , beta-Cyclodextrins/chemistry
16.
Bioorg Med Chem ; 25(17): 4835-4844, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28778369

ABSTRACT

BM212 [1,5-diaryl-2-methyl-3-(4-methylpiperazin-1-yl)-methyl-pyrrole] is a pyrrole derivative with strong inhibitory activity against drug resistant Mycobacterium tuberculosis and mycobacteria residing in macrophages. However, it was not pursued because of its poor pharmacokinetics and toxicity profile. Our goal was to design and synthesize new antimycobacterial BM212 analogs with lower toxicity and better pharmacokinetic profile. Using the scaffold hopping approach, three structurally diverse heterocycles - 2,3-disubstituted imidazopyridines, 2,3-disubstituted benzimidazoles and 1,2,4-trisubstituted imidazoles emerged as promising antitubercular agents. All compounds were synthesized through easy and convenient methods and their structures confirmed by IR, 1H NMR, 13C NMR and MS. In-vitro cytotoxicity studies on normal kidney monkey cell lines and HepG2 cell lines, as well as metabolic stability studies on rat liver microsomes for some of the most active compounds, established that these compounds have negligible cytotoxicity and are metabolically stable. Interestingly the benzimidazole compound (4a) is as potent as the parent molecule BM212 (MIC 2.3µg/ml vs 0.7-1.5µg/ml), but is devoid of the toxicity against HepG2 cell lines (IC50 203.10µM vs 7.8µM).


Subject(s)
Antitubercular Agents/chemistry , Piperazines/chemistry , Pyrroles/chemistry , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/toxicity , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/toxicity , Cell Line , Drug Design , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hep G2 Cells , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Mycobacterium tuberculosis/drug effects , Piperazines/pharmacology , Piperazines/toxicity , Pyrroles/pharmacology , Pyrroles/toxicity , Rats , Structure-Activity Relationship
17.
Water Sci Technol ; 75(5-6): 1084-1097, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28272038

ABSTRACT

Water contamination and its purification are a global problem. The current approach to purify water is reduction of impurities to acceptable levels. One of the ways to achieve this is by use of water-soluble polymers that extract organic and metallic contaminants, from water. This paper presents a blend of composite polymers that eliminates both the contaminants simultaneously by the principle of adsorption at lower critical solution temperature. These composite polymers have been synthesized by grafting poly(N,N-diethylacrylamide), poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) on-to the natural polymer chitosan or its derivatives, giving smart graft polymeric assemblies (GPAs). One of the graft polymers, GPA-2, exhibits excellent adsorption properties able to remove metal ions like cadmium, cobalt, copper, lead, iron and also organic impurities like chlorophenol and phthalic anhydride. Studies reveal that 6 mg/ml GPA-2 is able to effect a 100% removal of organic impurities - chlorophenol (50 ppm) and phthalic anhydride (70 ppm) - from water, while complete removal of the heavy metal ions (Cu+2, Co+2 and Cd+2) together at 30 ppm concentration has been achieved with 7.5 mg/ml GPA-2. The reduction in level of impurities along with recyclability and reproducibility in the elimination spectrum makes these assemblies promising materials in water treatment.


Subject(s)
Polymers/chemistry , Temperature , Water Purification/methods , Adsorption , Calorimetry, Differential Scanning , Chitosan/chemistry , Chromatography, Gel , Hydrogen-Ion Concentration , Molecular Weight , Organic Chemicals/isolation & purification , Polymers/chemical synthesis , Porosity , Proton Magnetic Resonance Spectroscopy , Recycling , Reproducibility of Results , Rheology , Solutions , Spectrophotometry, Atomic , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Static Electricity , Water Pollutants, Chemical/isolation & purification
18.
Colloids Surf B Biointerfaces ; 148: 674-683, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27701049

ABSTRACT

In present investigation, initially curcumin was complexed with 2-HP-ß-CD (curcumin-2-HP-ß-CD-complex) in 1:1 ratio and later amalgamated with chitosan microspheres (curcumin-2-HP-ß-CD-CMs) for selective delivery in colon only through oral route of administration. Various analytical, spectral and in-silico docking techniques revealed that the curcumin was deeply inserted in the 2-HP-ß-CD cavity with apparent stability constant of 3.35×10-3M. Furthermore, the mean particle size of 6.8±2.6µm and +39.2±4.1mV surface charge of curcumin-2-HP-ß-CD-complex-CMs in addition to encapsulation efficiency of about 79.8±6.3% exhibited that the tailored microspheres were optimum for colon delivery of curcumin. This was also demonstrated in dissolution testing and standard cell proliferation assay in which curcumin-2-HP-ß-CD-complex-CMs exhibited maximum release in simulated colonic fluid (SCF, pH ∼7.0-8.0, almond emulsion-ß-glucosidase) with improved therapeutic index in HT-29 cells. Consistently, curcumin-2-HP-ß-CD-complex-CMs successively enhanced the colonic bio-distribution of curcumin by ∼8.36 folds as compared to curcumin suspension in preclinical pharmacokinetic studies. In conclusion, curcumin-2-HP-ß-CD-complex-CMs warrant further in vivo tumor regression study to establish its therapeutic efficacy in experimental colon cancer.


Subject(s)
Chitosan/chemistry , Curcumin/pharmacokinetics , Microspheres , beta-Cyclodextrins/pharmacokinetics , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Area Under Curve , Colon/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Curcumin/administration & dosage , Curcumin/chemistry , Drug Delivery Systems/methods , Drug Liberation , HT29 Cells , Humans , Male , Metabolic Clearance Rate , Mice , Microscopy, Electron, Scanning , Molecular Dynamics Simulation , Particle Size , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/chemistry
19.
Curr Comput Aided Drug Des ; 12(4): 272-281, 2016.
Article in English | MEDLINE | ID: mdl-27412704

ABSTRACT

BACKGROUND: With cases of emergence of drug resistance to the current competitive inhibitors of neuraminidase (NA) such as oseltamivir and zanamavir, there is a present need for an alternative approach in the treatment of avian influenza. With this in view, some flavones and chalcones were designed based on quercetin, the most active naturally occurring noncompetitive inhibitor. OBJECTIVE: We attempt to understand the binding of quercetin to H5N1-NA, and synthetic analogs of quercetin namely flavones and its precursors the chalcones using computational tools. METHODS: Molecular docking was done using Libdock. Molecular dynamics (MD) simulations were performed using Amber14. We synthesized the two compounds; their structures were confirmed by infrared spectroscopy, 1H-NMR, and mass spectrometry. These molecules were then tested for H5N1-NA inhibition and kinetics of inhibition. RESULTS: Molecular docking studies yielded two compounds i.e., 4'-methoxyflavone and 2'-hydroxy-4-methoxychalcone, as promising leads which identified them as binders of the 150-cavity of NA. Furthermore, MD simulation studies revealed that quercetin and the two compounds bind and hold the 150 loop in its open conformation, which ultimately perturbs the binding of sialic acid in the catalytic site. Estimation of the free energy of binding by MM-PBSA portrays quercetin as more potent than chalcone and flavone. These molecules were then determined as non-competitive inhibitors from the Lineweaver-Burk plots rendered from the enzyme kinetic studies. CONCLUSION: We conclude that non-competitive type of inhibition, as shown in this study, can serve as an effective method to block NA and evade the currently seen drug resistance.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , Glycoside Hydrolase Inhibitors/pharmacology , Influenza A Virus, H5N1 Subtype/drug effects , Influenza, Human/drug therapy , Molecular Docking Simulation , Neuraminidase/antagonists & inhibitors , Quercetin/pharmacology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Drug Resistance, Viral , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Influenza A Virus, H5N1 Subtype/enzymology , Influenza, Human/virology , Kinetics , Mass Spectrometry , Neuraminidase/chemistry , Neuraminidase/metabolism , Protein Binding , Protein Conformation , Proton Magnetic Resonance Spectroscopy , Quercetin/analogs & derivatives , Quercetin/chemical synthesis , Quercetin/metabolism , Spectrophotometry, Infrared , Structure-Activity Relationship , Viral Proteins/chemistry , Viral Proteins/metabolism
20.
J Pharm Bioallied Sci ; 8(2): 161-9, 2016.
Article in English | MEDLINE | ID: mdl-27134470

ABSTRACT

AIMS: The objective of present study was to study the influence of different ß-cyclodextrin derivatives and different methods of complexation on aqueous solubility and consequent translation in in vivo performance of Pioglitazone (PE). MATERIAL AND METHODS: Three cyclodextrins: ß-cyclodextrin (BCD), hydroxypropyl-ß-cyclodextrin (HPBCD) and Sulfobutylether-7-ß-cyclodextrin (SBEBCD) were employed in preparation of 1:1 Pioglitazone complexes by three methods viz. co-grinding, kneading and co-evaporation. Complexation was confirmed by phase solubility, proton NMR, Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry (DSC) and X-Ray diffraction (XRD). Mode of complexation was investigated by molecular dynamic studies. Pharmacodynamic study of blood glucose lowering activity of PE complexes was performed in Alloxan induced diabetic rat model. RESULTS: Aqueous solubility of PE was significantly improved in presence of cyclodextrin. Apparent solubility constants were observed to be 254.33 M(-1) for BCD-PE, 737.48 M(-1) for HPBCD-PE and 5959.06 M(-1) for SBEBCD-PE. The in silico predictions of mode of inclusion were in close agreement with the experimental proton NMR observation. DSC and XRD demonstrated complete amorphization of crystalline PE upon inclusion. All complexes exhibited >95% dissolution within 10 min compared to drug powder that showed <40% at the same time. Marked lowering of blood glucose was recorded for all complexes. CONCLUSION: Complexation of PE with different BCD significantly influenced its aqueous solubility, improved in vitro dissolution and consequently translated into enhanced pharmacodynamic activity in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...