Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 520
Filter
1.
Cell Signal ; 121: 111291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986730

ABSTRACT

Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1ß) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.

2.
Chem Biodivers ; : e202400537, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008435

ABSTRACT

To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500µg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI ≤ 0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO + ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.

3.
Bioorg Chem ; 150: 107576, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901278

ABSTRACT

Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.

4.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738393

ABSTRACT

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

5.
Environ Res ; 252(Pt 3): 118950, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704008

ABSTRACT

This study investigated the sediment geochemistry of a fish farming area in net cage tanks in the Rosário reservoir, Brazil. Three areas were investigated: reference (RA), fish farming (FFA), and dispersion (DA). The results were analyzed through correlation, similarity, principal component analysis, comparison with legislation, sediment quality guidelines, and sediment pollution indices. The mean concentrations for RA, FFA, and DA areas were respectively: Cu (mg.kg-1) 37.74, 62.23, and 71.83; Mn (mg.kg-1) 22.55, 66.48, and 55.90; Zn (mg.kg-1) 9.13, 114.83, and 94.27; Fe (%) 0.28, 0.40, and 0.43; OM (%) 15.84, 21.95, and 18.45; TOC (%) 1.86, 3.69, and 6.05; TN (mg.kg-1) 2365.00, 5015.00, and 3447.51; TP (mg.kg-1) 780.00, 6896.00, and 2585.50; ORP (mV) -95.50, -135.20, and -127.10; pH 6.60, 6.58, and 6.05; <63 µm 90.59, 78.68, and 87.30. Statistically, the influence of fish farming on sediment, organic matter, and pollutant sedimentation was demonstrated. Cu and Zn concentrations were below sediment quality guidelines. Regarding legal limits (resolution 454/2012/CONAMA), nutrients in the FFA area exceeded by 60% (TN) and 100% (TP), while in DA and RA areas they were 100% lower. TOC was 100% lower in all areas. Organic matter exceeded the limit by 100% in all areas. Pollution indices resulted in: low contamination factor 78%; unpolluted for 87% of pollution load and 83% of combined pollution; moderately polluted for 75% of the Nemerow index. The greatest impacts and influence of farming on pollutant sedimentation were more concentrated in the fish farming area. In terms of legal aspects and pollution indices, fish farming produced low levels of trace metal pollution and nutrient concentrations exceeded legal limits.


Subject(s)
Aquaculture , Environmental Monitoring , Geologic Sediments , Tilapia , Water Pollutants, Chemical , Brazil , Geologic Sediments/analysis , Geologic Sediments/chemistry , Animals , Water Pollutants, Chemical/analysis
6.
Fitoterapia ; 176: 106027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777073

ABSTRACT

Cordiera myrciifolia is an abundant species in Northeast Brazil that presents metabolites of biological/therapeutic interest. From this perspective, the present study aimed to investigate the chemical constituents and evaluate the in vitro antimicrobial activity of hexane (HECM) and ethanolic (EECM) extracts of C. myrciifolia leaves. The extracts were analyzed by chromatographic techniques (GC and UPLC) coupled with mass spectrometry. The antimicrobial activity of the extracts and the extracts combined with conventional drugs was evaluated by microdilution. The in vitro effect of the treatments on Candida's morphological transition was verified through cultivation in humid chambers. In HECM, 11 constituents including fatty acids, and triterpenes, including phytosterols, alkanes, tocols, and primary alcohols were identified. Triterpenes represented >40% of the identified constituents, with Lupeol being the most representative. In EECM, 13 constituents were identified, of which eight belonged to the class of flavonoids. High antibacterial activity of HECM was detected against Escherichia coli and Staphylococcus aureus, with Minimum Inhibitory Concentrations of 8 and 16 µg/mL, respectively. The combined activity was more effective when combined with Norfloxacin and Imipenem. In anti-Candida activity, the IC50 of the extracts ranged from 36.6 to 129.1 µg/mL. There was potentiating effect when associated with Fluconazole. Both extracts inhibited the filamentous growth of C. tropicalis at a concentration of 512 µg/mL. C. myrciifolia extracts prove to be candidates for the development of new therapeutic formulations to treat bacterial and fungal infections.


Subject(s)
Anti-Infective Agents , Bacteria , Fungi , Plant Extracts , Rubiaceae , Plant Leaves/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Rubiaceae/chemistry , Inhibitory Concentration 50 , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Bacteria/drug effects , Fungi/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology
7.
Chem Biodivers ; : e202400072, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780224

ABSTRACT

The traditional use of the M. charantia L. plant to treat coughs, fever and expectoration is widely practiced in different cultures, but its effectiveness and safety still require scientific investigation. This study sought to perform a chemical analysis and evaluate the antitussive, expectorant and antipyretic effects of the ethanolic extract of M. charantia leaves (EEMc) in rats and mice. The EEMc was subjected to chemical analysis by HPLC-DAD, revealing the presence of the flavonoids astragalin and isoquercetin. Acute oral toxicity in mice did not result in deaths, although changes in liver weight and stool consistency were observed. EEMc demonstrated an antitussive effect at doses of 100 and 300 mg/kg in mice subjected to cough induction by citric acid nebulization. Furthermore, it showed expectorant activity at a dose of 300 mg/kg, assessed based on the elimination of the phenol red marker in bronchoalveolar lavage. In the evaluation of antipyretic activity in rats, fever induced by Saccharomyces cerevisiae was reduced at all doses tested during the first hour after treatment. This innovative study identified the presence of astragalin and isoquercetin in EEMc and indicated that the extract has antitussive, expectorant and antipyretic properties. Therefore, EEMc presents itself as a promising option in herbal medicine for the treatment of respiratory symptoms and fever.

8.
Chem Biodivers ; 21(7): e202400443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38757848

ABSTRACT

Ferulic acid (FA) is a naturally occurring phenolic compound commonly found in the plant Ferula communis. This study aims to investigate the hepatoprotective effect of FA and its derivatives (methyl ferulic acid and trans-ferulic acid) against oxidative stress and inflammation-related hepatotoxicity due to toxicants based on the results of different non-clinical and preclinical tests. For this, data was collected from different reliable electronic databases such as PubMed, Google Scholar, and ScienceDirect, etc. The results of this investigation demonstrated that FA and its derivatives have potent hepatoprotective effects against oxidative stress and inflammation-related damage. The findings also revealed that these protective effects are due to the antioxidant and anti-inflammatory effects of the chemical compound. FA and its analogues significantly inhibit free radical generation and hinder the effects of proinflammatory markers and inflammatory enzymes, resulting in diminished cytotoxic and apoptotic hepatocyte death. The compounds also prevent intracellular lipid accumulation and provide protective effects.


Subject(s)
Coumaric Acids , Inflammation , Oxidative Stress , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Oxidative Stress/drug effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Protective Agents/pharmacology , Protective Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology
9.
Chem Biodivers ; : e202400747, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808441

ABSTRACT

Phyllanthus emblica L., or Amla, is known for its therapeutic properties and has been used as a medicinal plant. It is rich in vitamin C and other bioactive phytochemicals like polyphenols, gallic acid, chebulagic acid, leutolin, quercetin, etc. Different parts of this plant are used to treat various viral, bacterial, and fungal diseases. This review article summarizes the recent literature relevant to the antiviral, antibacterial, and antifungal effects of P. emblica. A variety of bacteria (Staphylococcus aureus, Bacillus subtillus, Enterococcus faecalis, Salmonella typhi, and Escherichia, etc.), fungi (Alternaria alternate Botroyodiplodia theobromae, Colletotrichum corcori, Curvularia lunata, Fusarium exquisite, Fusarium solanii, Aspergillus niger, Candida albicans, Colletotrichum gleosparoitis, and Macrophomina phaseolina) and viruses, like  Influenza A virus strain H3N2, hepatitis B, Human Immunodeficiency virus type-1 (HIV-1), Simplex virus type 1 (HSV-1) and type 2 (HSV-2) have experimented. Different techniques were used based on the way of identification. `For example, disc diffusion, dilution methods, sound diffusion, Immuno-peroxidase monolayer assay, serum HBV and HBsAg assay, enzyme immunoassay, etc. The present review analyzed and summarized the antimicrobial activities of P. emblica and possible mechanisms of action to provide future directions in translating these findings clinically.

10.
J Ethnopharmacol ; 331: 118304, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723917

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Popularly known as "penicilina" and "terramicina", Alternanthera brasiliana (L.) Kuntze belongs to the Amaranthaceae family and stands out for its ethnomedicinal uses in the treatment of infections caused by pathogenic microorganisms in some countries. AIM OF THE STUDY: The present study aimed to carry out a literature review and analyze whether the scientific evidence really validates the numerous indications for the use of A. brasiliana in traditional medicine for the treatment of infectious diseases. Phytochemical and toxicological studies related to this species were also analyzed. MATERIAL AND METHODS: Scientific documents were retrieved from Google Scholar, PubMed®, ScienceDirect®, SciELO, SpringerLink®, Scopus®, and Web of Science™ databases. The literature was reviewed from the first report on the antimicrobial activity of A. brasiliana in 1994 until April 2024. RESULTS: According to the scientific documents analyzed, it was observed that A. brasiliana is widely used as a natural antibiotic for the treatment of infectious diseases in Brazil, mainly in the states of Rio Grande do Sul, Mato Grosso, and Minas Gerais. Its ethnomedicinal uses have also been reported in other countries such as Colombia and India. The leaves (78%) of A. brasiliana are the main parts used in the preparation of herbal medicines by traditional communities. Several A. brasiliana extracts showed low activity when evaluated against pathogens, including gram-positive bacteria, gram-negative bacteria, parasitic protozoa, and fungi. Only two studies reported that extracts from this plant showed high activity against the herpes simplex virus, Mycobacterium smegmatis, and Candida albicans. Phytochemicals belonging to the classes of phenolic compounds and flavonoid (52%), saturated and unsaturated fatty acids (33%), steroids and phytosterols (8%), terpenoids (5%), and fatty alcohol esters (2%) were identified in A. brasiliana. Toxicity (in vivo) and cytotoxicity (in vitro) studies of polar and non-polar extracts obtained from A. brasiliana leaves indicated that this plant is biologically safe. CONCLUSION: Despite being widely used as a natural antibiotic by traditional communities, scientific investigations related to the antimicrobial potential of A. brasiliana extracts have indicated inactivity against several pathogens.


Subject(s)
Amaranthaceae , Medicine, Traditional , Phytochemicals , Plant Extracts , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Amaranthaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Communicable Diseases/drug therapy , Ethnopharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytotherapy , Brazil
11.
Chem Biodivers ; 21(6): e202301982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608157

ABSTRACT

Geopropolis resins are produced by stingless bees (Meliponinae), developed from the collection of resinous materials, waxes and exudates, from the flora of the region where stingless bees are present, in addition to the addition of clay or earth in its composition. Several biological activities are attributed to Ethanol Extracts of Geopropolis (EEGP). The bioactive properties are associated with the complex chemical composition that the samples have. This work aims to evaluate the biological activities of the EEGP, in order to contribute with a natural therapeutic alternative, to face infections, mainly those caused by resistant strains of Staphylococcus aureus. The EEGP MIC tests showed antibacterial activity against two strains of S. aureus, both at concentrations of 550 µg/mL. The MBC performed with the inhibition values showed that the EEGP has bacteriostatic activity in both strains. Biofilm inhibition rates exhibited an average value greater than 65 % at the highest concentration. The EEGP antioxidant potential test showed good antioxidant activity (IC50) of 11.05±1.55 µg/mL. In the cytotoxicity test against HaCat cells, after 24 hours, EEGP induced cell viability at the three tested concentrations (550 µg/mL: 81.68±3.79 %; 1100 µg/mL: 67.10±3.76 %; 2200 µg/mL: 67.40±1.86 %). In view of the above, the safe use of EEGP from the brazilian northeast could be proven by the cytotoxicity test, and its use as an antioxidant and antibacterial agent has proven to be effective, as an alternative in combating oxidative stress and microorganisms such as S. aureus, which, through the spread and ongoing evolution of drug resistance, generates an active search for effective solutions.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Staphylococcus aureus/drug effects , Animals , Bees , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Biofilms/drug effects , Cell Survival/drug effects , Propolis/chemistry , Propolis/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Dose-Response Relationship, Drug
12.
Chem Biodivers ; 21(7): e202400444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38670923

ABSTRACT

Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.


Subject(s)
Antifungal Agents , Candida , Diosgenin , Microbial Sensitivity Tests , Diosgenin/pharmacology , Diosgenin/chemistry , Diosgenin/analogs & derivatives , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida/drug effects , Virulence/drug effects , Candida albicans/drug effects , Candida albicans/pathogenicity
13.
Curr Microbiol ; 81(5): 113, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472456

ABSTRACT

During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.


Subject(s)
Coronavirus Infections , Isatin , Humans , Molecular Docking Simulation , Antifungal Agents , Fungi
14.
Acta Trop ; 253: 107168, 2024 May.
Article in English | MEDLINE | ID: mdl-38432404

ABSTRACT

The present article aims to evaluate the antifungal and antivirulence effect of the phytoconstituent Limonene against Candida spp. Antifungal assays were performed, where the concentration capable of inhibiting 50 % of fungal growth, the growth inhibition curve, the minimum fungicidal concentration, the evaluation of the modifying effect with fluconazole, the inhibitory effect of the substances on the morphological transition of Candida spp. and the statistical analysis of the results were determined. With this study, it was seen that limonene demonstrated growth inhibition for the strains tested and when associated the natural compound with Fluconazole, there was potentiation of the effect of the drug, since the inhibition of growth by the combination occurred at lower concentrations against all strains tested, when compared to the drug alone, which inhibited growth at the highest concentration. In the test to determine the Minimum Fungicidal Concentration of the products tested alone and in combination, it was found that in the case of Candida strains, growth inhibition by limonene occurred at a concentration of 1024 µg/mL. For Fluconazole, growth impairment ranged from > 1024 µg/mL to 256 µg/mL for the strains. And when combined, limonene potentiated the action of FCZ, making fungal colonization unfeasible at concentrations below 1024 µg/mL. Regarding the morphological transition from yeast to hyphae, limonene was used at concentrations of 1024 µg/mL and 512 µg/mL, and it was found that, for CA and CK, the filaments were reduced in number and size at the highest concentration and against CT, the morphological transition from yeast to hyphae/pseudohyphae was totally inhibited, and if compared to the growth control, limonene was able to reduce fungal growth at concentrations greater than 512 µg/mL. This compound has antimicrobial activity described, due to its ability to interfere in the gene expression of the fungus, the limited therapeutic options and the recent emergence of multidrug-resistant Candida species represent a significant challenge for human medicine and highlight the need for new therapeutic approaches, and in this study a great potential of limonene was revealed in relation to the perspective of increasing the efficiency of commercial drug. This work can bring an important contribution to the scientific database, while emphasizing that in-depth studies and tests on the subject, in order to better investigate its effectiveness and mechanisms by which they exert their effects, are still necessary.


Subject(s)
Antifungal Agents , Candida , Humans , Antifungal Agents/pharmacology , Fluconazole/pharmacology , Limonene/pharmacology , Saccharomyces cerevisiae , Virulence , Fungi , Microbial Sensitivity Tests
15.
Microb Pathog ; 190: 106608, 2024 May.
Article in English | MEDLINE | ID: mdl-38503396

ABSTRACT

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Coumarins , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/metabolism , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism
16.
Int J Biol Macromol ; 264(Pt 1): 130500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428770

ABSTRACT

BACKGROUND: Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE: We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-ß-cyclodextrin (HPßCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD: We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS: It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1ß and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPßCD was able to increase the animal survival rate. CONCLUSION: NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.


Subject(s)
Citrus , Endotoxemia , Flavanones , Mice , Animals , Flavonoids/therapeutic use , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Endotoxemia/chemically induced , Endotoxemia/drug therapy , Lipopolysaccharides/therapeutic use , Anti-Inflammatory Agents/pharmacology
17.
Cell Signal ; 118: 111140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492625

ABSTRACT

The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Humans , Inflammation/metabolism , Immune System , Obesity/metabolism
18.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38460934

ABSTRACT

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Subject(s)
Liposomes , Staphylococcus aureus , Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Polycyclic Sesquiterpenes , Ethidium , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins
19.
Chem Biodivers ; 21(5): e202301615, 2024 May.
Article in English | MEDLINE | ID: mdl-38506600

ABSTRACT

Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.


Subject(s)
Phytochemicals , Humans , Animals , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Furocoumarins/pharmacology , Furocoumarins/chemistry , Furocoumarins/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry
20.
Acta Trop ; 253: 107157, 2024 May.
Article in English | MEDLINE | ID: mdl-38387772

ABSTRACT

Biofilms are a bacterial resistance strategy through which microorganisms organize themselves in the form of a colony fixed to a surface that is protected by a polymer matrix. Infectious diseases that result in biofilm formation have been considered a relevant public health problem due to the potential to increase patient morbidity and mortality, in addition to increasing the burden on health services. Such pathologies are treated with the use of antimicrobial drugs, the indiscriminate use of which has contributed to the process of bacterial resistance, demanding the need to invest in new alternatives to combat them. Based on this, the present work aimed to evaluate the anti-biofilm formation and eradication capacity of Hecogenin Acetate, a steroidal sapogenin of natural origin with important antibacterial properties. For this, we used strains of Streptococcus mutans INCQS 00,446 (ATCC 25,175), Enterococcus faecalis INCQS 00,018 (ATCC 14,506), Staphylococcus epidermidis INCQS 00,016 (ATCC 12,228), Staphylococcus aureus ATCC 25,923, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 259,223. The formation, formation inhibition and treatment assays were carried out in microdilution plates and revealed using the crystal violet method. Readings were carried out using absorbance at wavelengths of 492 nm. All tests were performed in triplicate and statistical analyzes were performed using Graphpad Prism v.5.0 software. It was observed that the bacterial strains used have a relevant capacity for biofilm formation, with the Gram positive ones identified in the present study as the best former. In the results of the analyzes with bacterial biofilm, it was identified that Hecogenin Acetate had a relevant antibiofilm capacity, and could therefore serve as a basis for further research into the development of new antimicrobial drugs.


Subject(s)
Anti-Infective Agents , Spiro Compounds , Steroids , Humans , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Biofilms , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...