Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 126: 72-83, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-27744189

ABSTRACT

Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 µM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-ß-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 µM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-ß-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-ß-naphthyl), with IC50 = 4 ± 1 µM and 6 ± 1 µM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.


Subject(s)
Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/toxicity , Cell Line , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/toxicity , Humans , Mice , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Conformation , Pyrimidines/metabolism , Pyrimidines/toxicity
2.
Malar J ; 14: 508, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26682750

ABSTRACT

BACKGROUND: The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. METHODS: Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. RESULTS: High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28.2) and the most active in vivo (at doses of 250 mg/kg, 71% suppression of P. berghei parasitaemia versus untreated controls). CONCLUSIONS: Ethnobotanical or ethnopharmacological reports describe the anti-malarial use of these plants or the antiplasmodial activity of congeneric species. No antiplasmodial activity has been demonstrated previously for the extracts of these plants. Seven plants exhibit in vivo and or in vitro anti-malarial potential. Future work should aim to discover the anti-malarial substances present.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/isolation & purification , Antimalarials/toxicity , Brazil , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Humans , Inhibitory Concentration 50 , Malaria/drug therapy , Mice, Inbred BALB C , Parasitemia/drug therapy , Parasitic Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plasmodium berghei/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...