Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 10: 554272, 2020.
Article in English | MEDLINE | ID: mdl-33224873

ABSTRACT

Despite advances in targeted therapeutics and understanding in molecular mechanisms, metastasis remains a substantial obstacle for cancer treatment. Acquired genetic mutations and transcriptional changes can promote the spread of primary tumor cells to distant tissues. Additionally, recent studies have uncovered that metabolic reprogramming of cancer cells is tightly associated with cancer metastasis. However, whether intracellular metabolism is spatially and temporally regulated for cancer cell migration and invasion is understudied. In this review, we highlight the emergence of a concept, termed "membraneless metabolic compartmentalization," as one of the critical mechanisms that determines the metastatic capacity of cancer cells. In particular, we focus on the compartmentalization of purine nucleotide metabolism (e.g., ATP and GTP) at the leading edge of migrating cancer cells through the uniquely phase-separated microdomains where dynamic exchange of nucleotide metabolic enzymes takes place. We will discuss how future insights may usher in a novel class of therapeutics specifically targeting the metabolic compartmentalization that drives tumor metastasis.

2.
Cancer Res ; 80(2): 204-218, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31676574

ABSTRACT

Dissemination is an essential early step in metastasis but its molecular basis remains incompletely understood. To define the essential targetable effectors of this process, we developed a 3D mammary epithelial culture model, in which dissemination is induced by overexpression of the transcription factor Twist1. Transcriptomic analysis and ChIP-PCR together demonstrated that protein kinase D1 (Prkd1) is a direct transcriptional target of Twist1 and is not expressed in the normal mammary epithelium. Pharmacologic and genetic inhibition of Prkd1 in the Twist1-induced dissemination model demonstrated that Prkd1 was required for cells to initiate extracellular matrix (ECM)-directed protrusions, release from the epithelium, and migrate through the ECM. Antibody-based protein profiling revealed that Prkd1 induced broad phosphorylation changes, including an inactivating phosphorylation of ß-catenin and two microtubule depolymerizing phosphorylations of Tau, potentially explaining the release of cell-cell contacts and persistent activation of Prkd1. In patients with breast cancer, TWIST1 and PRKD1 expression correlated with metastatic recurrence, particularly in basal breast cancer. Prkd1 knockdown was sufficient to block dissemination of both murine and human mammary tumor organoids. Finally, Prkd1 knockdown in vivo blocked primary tumor invasion and distant metastasis in a mouse model of basal breast cancer. Collectively, these data identify Prkd1 as a novel and targetable signaling node downstream of Twist1 that is required for epithelial invasion and dissemination. SIGNIFICANCE: Twist1 is a known regulator of metastatic cell behaviors but not directly targetable. This study provides a molecular explanation for how Twist1-induced dissemination works and demonstrates that it can be targeted. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/2/204/F1.large.jpg.


Subject(s)
Breast Neoplasms/genetics , Mammary Neoplasms, Experimental/genetics , Nuclear Proteins/metabolism , Protein Kinase C/genetics , Twist-Related Protein 1/metabolism , Animals , Breast/cytology , Breast/pathology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Datasets as Topic , Epithelial Cells/cytology , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Epithelium/pathology , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mammary Neoplasms, Experimental/pathology , Mice , Microtubules/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Primary Cell Culture , RNA-Seq , Signal Transduction/genetics
3.
PeerJ ; 4: e2142, 2016.
Article in English | MEDLINE | ID: mdl-27478693

ABSTRACT

Membrane-anchored matrix metalloproteinase 14 (MMP14) is involved broadly in organ development through both its proteolytic and signal-transducing functions. Knockout of Mmp14 (KO) in mice results in a dramatic reduction of body size and wasting followed by premature death, the mechanism of which is poorly understood. Since the mammary gland develops after birth and is thus dependent for its functional progression on systemic and local cues, we chose it as an organ model for understanding why KO mice fail to thrive. A global analysis of the mammary glands' proteome in the wild type (WT) and KO mice provided insight into an unexpected role of MMP14 in maintaining metabolism and homeostasis. We performed mass spectrometry and quantitative proteomics to determine the protein signatures of mammary glands from 7 to 11 days old WT and KO mice and found that KO rudiments had a significantly higher level of rate-limiting enzymes involved in catabolic pathways. Glycogen and lipid levels in KO rudiments were reduced, and the circulating levels of triglycerides and glucose were lower. Analysis of the ultrastructure of mammary glands imaged by electron microscopy revealed a significant increase in autophagy signatures in KO mice. Finally, Mmp14 silenced mammary epithelial cells displayed enhanced autophagy. Applied to a systemic level, these findings indicate that MMP14 is a crucial regulator of tissue homeostasis. If operative on a systemic level, these findings could explain how Mmp14KO litter fail to thrive due to disorder in metabolism.

4.
Biol Open ; 5(9): 1216-28, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27402962

ABSTRACT

Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1(+) epithelium displayed extensive intercellular junctions, and Twist1(-) luminal epithelial cells could still adhere to disseminating Twist1(+) cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1(+) cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate.

5.
J Cell Biol ; 204(5): 839-56, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24590176

ABSTRACT

Dissemination of epithelial cells is a critical step in metastatic spread. Molecular models of dissemination focus on loss of E-cadherin or repression of cell adhesion through an epithelial to mesenchymal transition (EMT). We sought to define the minimum molecular events necessary to induce dissemination of cells out of primary murine mammary epithelium. Deletion of E-cadherin disrupted epithelial architecture and morphogenesis but only rarely resulted in dissemination. In contrast, expression of the EMT transcription factor Twist1 induced rapid dissemination of cytokeratin-positive epithelial cells. Twist1 induced dramatic transcriptional changes in extracellular compartment and cell-matrix adhesion genes but not in cell-cell adhesion genes. Surprisingly, we observed disseminating cells with membrane-localized E-cadherin and ß-catenin, and E-cadherin knockdown strongly inhibited Twist1-induced single cell dissemination. Dissemination can therefore occur with retention of epithelial cell identity. The spread of cancer cells during metastasis could similarly involve activation of an epithelial motility program without requiring a transition from epithelial to mesenchymal character.


Subject(s)
Cadherins/physiology , Epithelial Cells/metabolism , Epithelium/metabolism , Nuclear Proteins/physiology , Twist-Related Protein 1/physiology , Animals , Cell Adhesion , Cell Culture Techniques , Cell Movement , Cell-Matrix Junctions/metabolism , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Gene Deletion , Gene Knockdown Techniques , Intercellular Junctions/physiology , Intercellular Junctions/ultrastructure , Mice , Neoplasm Metastasis/pathology , Nuclear Proteins/metabolism , Transcription, Genetic , Twist-Related Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...