Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542525

ABSTRACT

Among the many lysosomal storage disorders (LSDs) that would benefit from the establishment of novel cell models, either patient-derived or genetically engineered, is mucopolysaccharidosis type II (MPS II). Here, we present our results on the establishment and characterization of two MPS II patient-derived stem cell line(s) from deciduous baby teeth. To the best of our knowledge, this is the first time a stem cell population has been isolated from LSD patient samples obtained from the dental pulp. Taking into account our results on the molecular and biochemical characterization of those cells and the fact that they exhibit visible and measurable disease phenotypes, we consider these cells may qualify as a valuable disease model, which may be useful for both pathophysiological assessments and in vitro screenings. Ultimately, we believe that patient-derived dental pulp stem cells (DPSCs), particularly those isolated from human exfoliated deciduous teeth (SHEDs), may represent a feasible alternative to induced pluripotent stem cells (iPSCs) in many labs with standard cell culture conditions and limited (human and economic) resources.


Subject(s)
Lysosomal Storage Diseases , Mucopolysaccharidosis II , Humans , Stem Cells , Cell Line , Tooth, Deciduous , Lysosomes , Dental Pulp , Cell Differentiation/physiology , Cell Proliferation
2.
Article in English | MEDLINE | ID: mdl-37937567

ABSTRACT

INTRODUCTION: When it comes to disease modeling, countless models are available for Lysosomal Storage Diseases (LSD). Historically, two major approaches are well-established: in vitro assessments are performed in patient fibroblasts, while in vivo pre-clinical studies are performed in mouse models. Still, both platforms have a series of drawbacks. Thus, we implemented two alternative and innovative protocols to mimic a particular sub-group of LSDs, the Mucopolysaccharidoses both in vitro and in vivo. METHODS: The first one relies on a non-invasive approach using dental pulp stem cells from deciduous teeth (SHEDs). SHEDs are multipotent neuronal precursors that can easily be collected. The second uses a state-of-the-art gene editing technology (CRISPR/Cas9) to generate zebrafish disease models. RESULTS: Even though this is an ongoing project, we have already established and characterized two MPS II and one MPS VI SHED cell models. These cells self-maintain through several passages and can give rise to a variety of cells including neurons. Furthermore, all MPS-associated sub-cellular phenotypes we have assessed so far are easily observable in these cells. Regarding our zebrafish models, we have successfully knocked down both naglu and hgsnat and the first results we got from the behavioral analysis are promising ones, as we can observe altered activity and sleep patterns in the genetically modified fish. For this particular approach we chose MPS III forms as our target disorders, since their neurological features (hyperactivity, seizures and motor impairment) and lifespan decrease would be easily recognizable in zebrafish. CONCLUSION: Now that these methods are well-established in our lab, their potential is immense. On one hand, the newly developed models will be of ultimate value to understand the mechanisms underlying MPS sub-cellular pathology, which have to be further elucidated. On the other hand, they will constitute an optimal platform for drug testing in house. Also noteworthy, our models will be published as lab resources and made available for the whole LSD community.

3.
Genes (Basel) ; 14(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38002933

ABSTRACT

Niemann-Pick type C (NPC, ORPHA: 646) is a neuro-visceral, psychiatric disease caused predominantly by pathogenic variants in the NPC1 gene or seldom in NPC2. The rarity of the disease, and its wide range of clinical phenotypes and ages of onset, turn the diagnosis into a significant challenge. Other than the detailed clinical history, the typical diagnostic work-up for NPC includes the quantification of pathognomonic metabolites. However, the molecular basis diagnosis is still of utmost importance to fully characterize the disorder. Here, the authors provide an overview of splicing variants in the NPC1 and NPC2 genes and propose a new workflow for NPC diagnosis. Splicing variants cover a significant part of the disease-causing variants in NPC. The authors used cDNA analysis to study the impact of such variants, including the collection of data to classify them as leaky or non-leaky pathogenic variants. However, the presence of naturally occurring spliced transcripts can misdiagnose or mask a pathogenic variant and make the analysis even more difficult. Analysis of the NPC1 cDNA in NPC patients in parallel with controls is vital to assess and detect alternatively spliced forms. Moreover, nonsense-mediated mRNA decay (NMD) analysis plays an essential role in evaluating the naturally occurring transcripts during cDNA analysis and distinguishing them from other pathogenic variants' associated transcripts.


Subject(s)
Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , DNA, Complementary , Carrier Proteins/genetics , Phenotype , RNA Splicing
4.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834063

ABSTRACT

Splicing of pre-mRNA is a crucial regulatory stage in the pathway of gene expression. The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. Targeting aberrant RNA(s) may thus provide an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. To that purpose, the use of engineered U1 snRNA (either modified U1 snRNAs or exon-specific U1s-ExSpeU1s) has been applied as a potentially therapeutic strategy to correct splicing mutations, particularly those affecting the 5' splice-site (5'ss). Here we review and summarize a vast panoply of studies that used either modified U1 snRNAs or ExSpeU1s to mediate gene therapeutic correction of splicing defects underlying a considerable number of genetic diseases. We also focus on the pre-clinical validation of these therapeutic approaches both in vitro and in vivo, and summarize the main obstacles that need to be overcome to allow for their successful translation to clinic practice in the future.


Subject(s)
RNA Precursors , RNA Splicing , Humans , RNA Precursors/metabolism , RNA Splice Sites , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Mutation , Alternative Splicing
5.
Biomedicines ; 11(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37892989

ABSTRACT

Lipids are essential for cellular function and are tightly controlled at the transcriptional and post-transcriptional levels. Dysregulation of these pathways is associated with vascular diseases, diabetes, cancer, and several inherited metabolic disorders. MicroRNAs (miRNAs), in particular, are a family of post-transcriptional gene repressors associated with the regulation of many genes that encode proteins involved in multiple lipid metabolism pathways, thereby influencing their homeostasis. Thus, this class of non-coding RNAs (ncRNAs) has emerged as a promising therapeutic target for the treatment of lipid-related metabolic alterations. Most of these miRNAs act at an intracellular level, but in the past few years, a role for miRNAs as intercellular signaling molecules has also been uncovered since they can be transported in bodily fluids and used as potential biomarkers of lipid metabolic alterations. In this review, we point out the current knowledge on the miRNA signature in a lysosomal storage disorder associated with lipid dysfunction, Niemann-Pick type C, and discuss the potential use of miRNAs as biomarkers and therapeutic targets for RNA-based therapies.

6.
Biomedicines ; 11(4)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37189853

ABSTRACT

Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.

7.
Life (Basel) ; 12(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35629276

ABSTRACT

Over recent decades, the many functions of RNA have become more evident. This molecule has been recognized not only as a carrier of genetic information, but also as a specific and essential regulator of gene expression. Different RNA species have been identified and novel and exciting roles have been unveiled. Quite remarkably, this explosion of novel RNA classes has increased the possibility for new therapeutic strategies that tap into RNA biology. Most of these drugs use nucleic acid analogues and take advantage of complementary base pairing to either mimic or antagonize the function of RNAs. Among the most successful RNA-based drugs are those that act at the pre-mRNA level to modulate or correct aberrant splicing patterns, which are caused by specific pathogenic variants. This approach is particularly tempting for monogenic disorders with associated splicing defects, especially when they are highly frequent among affected patients worldwide or within a specific population. With more than 600 mutations that cause disease affecting the pre-mRNA splicing process, we consider lysosomal storage diseases (LSDs) to be perfect candidates for this type of approach. Here, we introduce the overall rationale and general mechanisms of splicing modulation approaches and highlight the currently marketed formulations, which have been developed for non-lysosomal genetic disorders. We also extensively reviewed the existing preclinical studies on the potential of this sort of therapeutic strategy to recover aberrant splicing and increase enzyme activity in our diseases of interest: the LSDs. Special attention was paid to a particular subgroup of LSDs: the mucopolysaccharidoses (MPSs). By doing this, we hoped to unveil the unique therapeutic potential of the use of this sort of approach for LSDs as a whole.

8.
Mol Genet Genomic Med ; 8(11): e1451, 2020 11.
Article in English | MEDLINE | ID: mdl-32931663

ABSTRACT

BACKGROUND: Niemann-Pick type C (NPC, MIM #257220) is a neuro-visceral disease, caused predominantly by pathogenic variants in the NPC1 gene. Here we studied patients with clinical diagnosis of NPC but inconclusive results regarding the molecular analysis. METHODS: We used a Next-Generation Sequencing (NGS)-panel followed by cDNA analysis. Latter, we used massively parallel single-cell RNA-seq (MARS-Seq) to address gene profiling changes and finally the effect of different variants on the protein and cellular levels. RESULTS: We identified novel variants and cDNA analysis allowed us to establish the functional effect of a silent variant, previously reported as a polymorphism. We demonstrated that this variant induces the skipping of exon 11 leading to a premature stop codon and identified it in NPC patients from two unrelated families. MARS-Seq analysis showed that a number of upregulated genes were related to the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in one specific patient. Also, for all analyzed variants, the NPC1 protein was partially retained in the ER. CONCLUSION: We showed that the NPC1 silent polymorphism (p.V562V) is a disease-causing variant in NPC and that the UPR is upregulated in an NPC patient.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/genetics , Silent Mutation , Unfolded Protein Response , Cells, Cultured , Child , Exons , Fibroblasts/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C/metabolism , RNA Splicing
9.
Int J Mol Sci ; 21(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32883051

ABSTRACT

Lysosomal storage diseases (LSDs) are a heterogeneous group of genetic disorders with variable degrees of severity and a broad phenotypic spectrum, which may overlap with a number of other conditions. While individually rare, as a group LSDs affect a significant number of patients, placing an important burden on affected individuals and their families but also on national health care systems worldwide. Here, we present our results on the use of an in-house customized next-generation sequencing (NGS) panel of genes related to lysosome function as a first-line molecular test for the diagnosis of LSDs. Ultimately, our goal is to provide a fast and effective tool to screen for virtually all LSDs in a single run, thus contributing to decrease the diagnostic odyssey, accelerating the time to diagnosis. Our study enrolled a group of 23 patients with variable degrees of clinical and/or biochemical suspicion of LSD. Briefly, NGS analysis data workflow, followed by segregation analysis allowed the characterization of approximately 41% of the analyzed patients and the identification of 10 different pathogenic variants, underlying nine LSDs. Importantly, four of those variants were novel, and, when applicable, their effect over protein structure was evaluated through in silico analysis. One of the novel pathogenic variants was identified in the GM2A gene, which is associated with an ultra-rare (or misdiagnosed) LSD, the AB variant of GM2 Gangliosidosis. Overall, this case series highlights not only the major advantages of NGS-based diagnostic approaches but also, to some extent, its limitations ultimately promoting a reflection on the role of targeted panels as a primary tool for the prompt characterization of LSD patients.


Subject(s)
Genetic Markers , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Lysosomal Storage Diseases/diagnosis , Lysosomes/pathology , Global Health , Humans , Lysosomal Storage Diseases/genetics , Lysosomes/genetics , Sequence Analysis, DNA
10.
Int J Mol Sci ; 21(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785133

ABSTRACT

More than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.


Subject(s)
Central Nervous System Diseases/complications , Central Nervous System Diseases/drug therapy , Drug Delivery Systems/methods , Liposomes/chemistry , Lysosomal Storage Diseases/complications , Lysosomal Storage Diseases/drug therapy , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Brain/metabolism , Central Nervous System Diseases/genetics , Central Nervous System Diseases/metabolism , Drug Stability , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , RNA, Small Interfering/metabolism
11.
Hum Gene Ther ; 31(13-14): 775-783, 2020 07.
Article in English | MEDLINE | ID: mdl-32283951

ABSTRACT

Lysosomal storage disorders (LSDs) are a group of rare inherited metabolic diseases caused by the malfunction of the lysosomal system, which results in the accumulation of undergraded substrates inside the lysosomes and leads to severe and progressive pathology. Despite there currently being a broad understanding of the molecular defects behind LSDs, curative therapies have been approved for only few of these diseases, whereas existing treatments are still mostly symptomatic with several limitations. Mucolipidosis type II alpha/beta (ML II) is one of most severe LSDs, which is caused by the total deficiency of the GlcNAc-1-phosphotransferase, a key enzyme for the formation of specific targeting signals on lysosomal hydrolases to lysosomes. GlcNAc-1-phosphotransferase is a multimeric enzyme complex encoded by two genes: GNPTAB and GNPTG. One of the most frequent ML II causal mutation is a dinucleotide deletion on exon 19 of GNPTAB (c.3503_3504del) that leads to the generation of a truncated protein, loss of GlcNAc-1-phosphotransferase activity, and missorting of multiple lysosomal enzymes. Presently, there is no therapy available for ML II. In this study, we explored the possibility of an innovative therapeutic strategy for ML II based on the use of antisense oligonucleotides (AOs) capable to induce the skipping of GNPTAB exon 19 harboring the most common disease-causing mutation, c.3503_3504del. The approach confirmed the ability of specific AOs for RNA splicing modulation, thus paving the way for future studies on the therapeutic potential of this strategy.


Subject(s)
Exons , Fibroblasts/metabolism , Mucolipidoses/therapy , Mutation , Oligonucleotides, Antisense/genetics , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Amino Acid Sequence , Case-Control Studies , Humans , Mucolipidoses/genetics , Mucolipidoses/pathology , Phenotype , Sequence Homology , Transferases (Other Substituted Phosphate Groups)/genetics
12.
Diagnostics (Basel) ; 10(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973102

ABSTRACT

Here, we present the molecular diagnosis of a patient with a general clinical suspicion of Mucopolysaccharidosis, highlighting the different tools used to perform its molecular characterization. In order to decrease the turnaround time for the final report and contribute to reduce the "diagnostic odyssey", which frequently afflicts affected families, the proband's sample was simultaneously screened for mutations in a number of lysosomal function-related genes with targeted next-generation sequencing (NGS) protocol. After variant calling, the most probable cause for disease was a novel ARSB intronic variant, c.1213+5G>T [IVS6+5G>T], detected in homozygosity. In general, homozygous or compound heterozygous mutations in the ARSB gene, underlie MPS type VI or Maroteaux-Lamy syndrome. Still, even though the novel c.1213+5G>T variant was easy to detect by both NGS and Sanger sequencing, only through indirect studies and functional analyses could we present proof of principle on its pathogenicity. Globally, this case reminds us that whenever a novel variant is detected, its pathogenicity must be carefully assessed before a definitive diagnosis is established, while highlighting alternative approaches that may be used to assess its effect in the absence RNA/cDNA sample(s) from the proband. This is particularly relevant for intronic variants such as the one here reported. Special attention will be given to the use of reporter minigene systems, which may be constructed/designed to dissect the effect of this sort of alterations, providing an insight into their consequences over the normal pre-mRNA splicing process of the affected gene.

13.
Adv Exp Med Biol ; 1157: 133-177, 2019.
Article in English | MEDLINE | ID: mdl-31342441

ABSTRACT

In recent years, the RNA molecule became one of the most promising targets for therapeutic intervention. Currently, a large number of RNA-based therapeutics are being investigated both at the basic research level and in late-stage clinical trials. Some of them are even already approved for treatment. RNA-based approaches can act at pre-mRNA level (by splicing modulation/correction using antisense oligonucleotides or U1snRNA vectors), at mRNA level (inhibiting gene expression by siRNAs and antisense oligonucleotides) or at DNA level (by editing mutated sequences through the use of CRISPR/Cas). Other RNA approaches include the delivery of in vitro transcribed (IVT) mRNA or the use of oligonucleotides aptamers. Here we review these approaches and their translation into clinics trying to give a brief overview also on the difficulties to its application as well as the research that is being done to overcome them.


Subject(s)
Genetic Therapy , Oligonucleotides, Antisense , Oligonucleotides , Genetic Therapy/trends , Humans , RNA Splicing , RNA, Messenger , RNA, Small Interfering
14.
World J Pediatr ; 13(4): 374-380, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28101780

ABSTRACT

BACKGROUND: Mucopolysaccharidoses type III (MPS III) are a group of autosomal recessive lysosomal storage diseases, caused by mutations in genes that code for enzymes involved in the lysosomal degradation of heparan sulphate: heparan sulfate sulfamidase (SGSH), α-Nacetylglucosaminidase (NAGLU), heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT), and N-acetylglucosamine-6-sulfatase (GNS). METHODS: In this study, we have performed the molecular analysis of the SGSH, NAGLU and HGSNAT genes in 10 patients from 6 different MPS III Tunisian families. RESULTS: In the SGSH gene, two mutations were identified: one novel (p.D477N) and one already described (p.Q365X). In the NAGLU gene, two novel mutations were discovered (p.L550P and p.E153X). For the novel missense mutations found in these two genes we performed an in silico structural analysis and the results were consistent with the clinical course of the patients harboring those mutations. Finally, in HGSNAT gene, we found the splicesite mutation c.234+1G>A that had already been reported as relatively frequent in MPS IIIC patients from countries surrounding the basin of the Mediterranean sea. Its presence in two Tunisian MPS IIIC families points to the hypothesis of its peri Mediterranean origin. With the exception of the c.234+1G>A mutation, that was identified in two unrelated MPS IIIC families, the other identified mutations were family-specific and were always found in homozygosity in the patients studied, thus reflecting the existence of consanguinity in MPS III Tunisian families. CONCLUSIONS: Three novel mutations are reported here, further contributing to the knowledge of the molecular basis of these diseases. The results of this study will allow carrier detection in affected families and prenatal molecular diagnosis, leading to an improvement in genetic counseling.


Subject(s)
DNA Mutational Analysis , Genetic Predisposition to Disease/epidemiology , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/genetics , Mutation, Missense , Acetylglucosaminidase/genetics , Female , Humans , Hydrolases/genetics , Infant, Newborn , Male , Pedigree , Risk Assessment , Sampling Studies , Tunisia
16.
Indian J Pediatr ; 84(2): 144-146, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27785713

ABSTRACT

Mucopolysaccharidosis (MPS) and Mucolipidosis (ML) share common phenotypes (coarse facial features, organomegaly, dysostosis multiplex) despite having different molecular basis. Thus, they pose great diagnostic challenge to treating clinicians. Differentiating between the two conditions requires a battery of tests from screening to molecular diagnosis. Besides discussing differential diagnosis of MPS like features with negative urinary Glycosaminoglycans (GAG), the authors also discuss the utility of p-nitrocatechol sulphate based chemical test as an important screening tool, besides establishing molecular basis in index case.


Subject(s)
Mucolipidoses/diagnosis , Catechols , Diagnosis, Differential , Humans , Infant , Male , Mucopolysaccharidoses/diagnosis , Phenotype
17.
J Pediatr Endocrinol Metab ; 29(10): 1225-1228, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27710913

ABSTRACT

While being well known that the diagnosis of many genetic disorders relies on a combination of clinical suspicion and confirmatory genetic testing, not rarely, however, genetic testing needs much perseverance and cunning strategies to identify the causative mutation(s). Here we present a case of a thorny molecular diagnosis of mucolipidosis type III alpha/beta, which is an autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/ß-subunits of the GlcNAc-1-phosphotransferase. We used both cDNA and gDNA analyses to characterize a mucolipidosis type III alpha/beta patient whose clinical diagnosis was already confirmed biochemically. In a first stage only one causal mutation was identified in heterozygosity, the already described missense mutation c.1196C>T(p.S399F), both at cDNA and gDNA levels. Only after conducting inhibition of nonsense-mediated mRNA decay (NMD) assays and after the utilization of another pair of primers the second mutation, the c.3503_3504delTC deletion, was identified. Our findings illustrate that allelic dropout due to the presence of polymorphisms and/or of mutations that trigger the NMD pathway can cause difficulties in current molecular diagnosis tests.


Subject(s)
Mucolipidoses/diagnosis , Mucolipidoses/genetics , Mutation/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Alleles , Child, Preschool , Genetic Testing , Heterozygote , Humans , Phenotype , Polymerase Chain Reaction
18.
Int J Mol Sci ; 17(7)2016 Jul 04.
Article in English | MEDLINE | ID: mdl-27384562

ABSTRACT

Lysosomal storage diseases (LSDs) are a group of rare, life-threatening genetic disorders, usually caused by a dysfunction in one of the many enzymes responsible for intralysosomal digestion. Even though no cure is available for any LSD, a few treatment strategies do exist. Traditionally, efforts have been mainly targeting the functional loss of the enzyme, by injection of a recombinant formulation, in a process called enzyme replacement therapy (ERT), with no impact on neuropathology. This ineffectiveness, together with its high cost and lifelong dependence is amongst the main reasons why additional therapeutic approaches are being (and have to be) investigated: chaperone therapy; gene enhancement; gene therapy; and, alternatively, substrate reduction therapy (SRT), whose aim is to prevent storage not by correcting the original enzymatic defect but, instead, by decreasing the levels of biosynthesis of the accumulating substrate(s). Here we review the concept of substrate reduction, highlighting the major breakthroughs in the field and discussing the future of SRT, not only as a monotherapy but also, especially, as complementary approach for LSDs.


Subject(s)
Lysosomal Storage Diseases/therapy , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/therapeutic use , Enzyme Replacement Therapy , Gaucher Disease/metabolism , Gaucher Disease/pathology , Gaucher Disease/therapy , Genistein/therapeutic use , Humans , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Mucopolysaccharidoses/metabolism , Mucopolysaccharidoses/pathology , Mucopolysaccharidoses/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/therapy
19.
Mol Genet Metab ; 117(2): 53-65, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26422115

ABSTRACT

Sixty years after its discovery, the lysosome is no longer considered as cell's waste bin but as an organelle playing a central role in cell metabolism. Besides its well known association with lysosomal storage disorders (mostly rare and life-threatening diseases), recent data have shown that the lysosome is also a player in some of the most common conditions of our time; and, perhaps even most important, it is not only a target for orphan drugs (rare disease therapeutic approaches) but also a putative target to treat patients suffering from common complex diseases worldwide. Here we review the striking associations linking rare lysosomal storage disorders such as the well-known Gaucher disease, or even the recently discovered, extremely rare Neuronal Ceroid Lipofuscinosis-11 and some of the most frequent, multifaceted and complex disorders of modern society such as cancer, Parkinson's disease and frontotemporal lobar degeneration.


Subject(s)
Lysosomal Storage Diseases/complications , Animals , Frontotemporal Lobar Degeneration/etiology , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Humans , Lysosomal Storage Diseases/drug therapy , Lysosomal Storage Diseases/genetics , Lysosomes/metabolism , Mutation , Neoplasms/etiology , Neoplasms/genetics , Neoplasms/metabolism , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/metabolism , Rare Diseases/complications , Rare Diseases/drug therapy , Rare Diseases/genetics
20.
Diseases ; 4(4)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-28933412

ABSTRACT

Lysosomal storage diseases are a group of rare genetic disorders characterized by the accumulation of storage molecules in late endosomes/lysosomes. Most of them result from mutations in genes encoding for the catabolic enzymes that ensure intralysosomal digestion. Conventional therapeutic options include enzyme replacement therapy, an approach targeting the functional loss of the enzyme by injection of a recombinant one. Even though this is successful for some diseases, it is mostly effective for peripheral manifestations and has no impact on neuropathology. The development of alternative therapeutic approaches is, therefore, mandatory, and striking innovations including the clinical development of pharmacological chaperones and gene therapy are currently under evaluation. Most of them, however, have the same underlying rationale: an attempt to provide or enhance the activity of the missing enzyme to re-establish substrate metabolism to a level that is consistent with a lack of progression and/or return to health. Here, we will focus on the one approach which has a different underlying principle: substrate reduction therapy (SRT), whose uniqueness relies on the fact that it acts upstream of the enzymatic defect, decreasing storage by downregulating its biosynthetic pathway. Special attention will be given to the most recent advances in the field, introducing the concept of genetic SRT (gSRT), which is based on the use of RNA-degrading technologies (RNA interference and single stranded antisense oligonucleotides) to promote efficient substrate reduction by decreasing its synthesis rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...