Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Biosci ; 43(5): 931-940, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30541953

ABSTRACT

This study was designed to investigate the effect of pterostilbene (PTS) on cardiac oxidative stress in vitro, as this is a simple and promising methodology to study cardiac disease. Cardiac myoblasts (H9c2 cells) and homogenised cardiac tissue were incubated with the PTS and cyclodextrin (PTS + HPßCD) complex for 1 and 24 h, respectively, at concentrations of 50µM for the cells and 25 and 50µM for cardiac tissue. The PTS + HPßCD complex was used to increase the solubility of PTS in water. After the pretreatment period, cardiomyoblasts were challenged with hydrogen peroxide (6.67µM) for 10 min, while cardiac tissue was submitted to a hydroxyl radical generator system (30 min). Cellular viability, oxidative stress biomarkers (e.g. total reactive oxygen species (ROS), carbonyl assay and lipoperoxidation) and the antioxidant response (e.g. sulfhydryl and the antioxidant enzyme activities of superoxide dismutase, catalase and glutathione peroxidase) were evaluated. In cardiomyoblasts, the PTS + HPßCD complex (50µM) increased cellular viability. Moreover, the PTS + HPßCD complex also significantly increased sulfhydryl levels in the cells submitted to an oxidative challenge. In cardiac tissue, lipid peroxidation, carbonyls and ROS levels were significantly increased in the groups submitted to oxidative damage, while the PTS + HPßCD complex significantly reduced ROS levels in these groups. In addition, the PTS + HPßCD complex also provoked increased catalase activity in both experimental protocols. These data suggest that the PTS + HPßCD complex may play a cardioprotective role through a reduction of ROS levels associated with an improved antioxidant response.


Subject(s)
Antioxidants/pharmacology , Heart/drug effects , Homeostasis/drug effects , Myoblasts, Cardiac/drug effects , Stilbenes/pharmacology , Animals , Antioxidants/chemistry , Apoptosis/drug effects , Catalase/metabolism , Cell Survival/drug effects , Cyclodextrins/chemistry , Glutathione Peroxidase/metabolism , Homeostasis/physiology , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/drug effects , Male , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Rats , Rats, Wistar , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Stilbenes/chemistry , Superoxide Dismutase/metabolism
3.
Shock ; 40(3): 203-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23846411

ABSTRACT

INTRODUCTION: It has been shown that the innate immune system mediates acute lung inflammation triggered by intestinal trauma. Sexual dimorphism modulates the profile of TH1 and TH2 lymphocytes, and accordingly sex hormones may modulate acute lung inflammation by intestinal ischemia/reperfusion (I/R). Studies indicate that female rats are relatively resistant to organ injury caused by hemorrhagic shock and that the gut of female is more resistant than that of the male to deleterious effects of ischemic injury. At the present study, we investigated the effect of estradiol (E(2)) on the lung inflammation after intestinal I/R and its interaction with the nitric oxide (NO) pathway. METHODS: Anesthetized female rats submitted or not to 7 days ovariectomy (OVx) were subjected to occlusion of the superior mesenteric artery during 45 min, followed by 2 h of reperfusion. Groups of rats were treated with E(2) (17ß-estradiol, 280 µg/kg, s.c.) 24 h before ischemia and/or with the nonselective NO synthase inhibitor L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride) (5 mg/kg, i.v.). In a parallel set of experiments, the selective NO synthase inhibitor, aminoguanidine (50 mg/kg i.v.), was given 1 h before ischemia. In all groups, lung vascular permeability (LVP) was assessed using the Evans blue dye extravasation method, neutrophil recruitment to the tissues by the standard myeloperoxidase (MPO) method, and endothelial NO synthase (eNOS) protein expression by Western blot. RESULTS: In OVx rats, LVP and MPO were increased after intestinal I/R as compared with intact controls. Estradiol reverted the LVP, but not MPO. Aminoguanidine reduced LVP in OVx rats. The E(2) protective effect on LVP was abolished by L-NAME; moreover, an increase in LVP even when compared with OVx rats treated only with L-NAME was observed. In addition, lung eNOS protein expression was reduced in OVx-I/R rats in comparison to intact controls and the E(2) inhibited this effect. CONCLUSIONS: Estradiol treatment is able to reduce lung inflammation due to intestinal I/R, but with the concomitant blockade of NOS activity, this effect is abolished. Nitric oxide probably reduces the vascular deleterious effects of intestinal I/R, and E(2) pretreatment reduces lung inflammation after intestinal I/R and exerts these effects by modulating eNOS protein expression in the lungs.


Subject(s)
Estradiol/therapeutic use , Intestines/blood supply , Nitric Oxide/metabolism , Pneumonia/drug therapy , Pneumonia/metabolism , Animals , Female , Male , Rats , Rats, Wistar
4.
Auton Neurosci ; 177(2): 163-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23623788

ABSTRACT

The objective of this study was to explore the influence of the renin-angiotensin system on cardiac prooxidants and antioxidants levels and its association to autonomic imbalance induced by hyperthyroidism. Male Wistar rats were divided into four groups: control, losartan (10mg/kg/day by gavage, 28 day), thyroxine (T4) (12 mg/L in drinking water for 28 days), and T4+losartan. Spectral analysis (autonomic balance), angiotensin II receptor (AT1R), NADPH oxidase, Nrf2 and heme-oxygenase-1 (HO-1) myocardial protein expression, and hydrogen peroxide (H2O2) concentration were quantified. Autonomic imbalance induced by hyperthyroidism (~770%) was attenuated in the T4+losartan group (~32%) (P<0.05). AT1R, NADPH oxidase, H2O2, as well as concentration, Nrf2 and HO-1 protein expression were elevated (~172%, 43%, 40%, 133%, and 154%, respectively) in T4 group (P<0.05). H2O2 and HO-1 levels were returned to control values in the T4+losartan group (P<0.05). The overall results demonstrate a positive impact of RAS blockade in the autonomic control of heart rate, which was associated with an attenuation of H2O2 levels, as well as with a reduced counter-regulatory response of HO-1 in experimental hyperthyroidism.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Hyperthyroidism/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/physiology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Heart Rate/drug effects , Heart Rate/physiology , Hyperthyroidism/drug therapy , Male , Rats , Rats, Wistar
5.
Braz J Med Biol Res ; 44(9): 920-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21956535

ABSTRACT

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of ß-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.


Subject(s)
Cardiovascular Diseases/physiopathology , Endocrine System Diseases/physiopathology , Endothelium, Vascular/physiopathology , Metabolic Diseases/physiopathology , Nitric Oxide Synthase Type III/metabolism , Animals , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Endocrine System Diseases/metabolism , Endothelium, Vascular/metabolism , Endothelium-Dependent Relaxing Factors/physiology , Humans , Nitric Oxide/biosynthesis , Obesity/metabolism , Obesity/physiopathology , Rats
6.
Braz. j. med. biol. res ; 44(9): 920-932, Sept. 2011. ilus
Article in English | LILACS | ID: lil-599670

ABSTRACT

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.


Subject(s)
Animals , Humans , Rats , Cardiovascular Diseases/physiopathology , Endocrine System Diseases/physiopathology , Endothelium, Vascular/physiopathology , Metabolic Diseases/physiopathology , Nitric Oxide Synthase Type III/metabolism , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Endocrine System Diseases/metabolism , Endothelium, Vascular/metabolism , Endothelium-Dependent Relaxing Factors/physiology , Nitric Oxide/biosynthesis , Obesity/metabolism , Obesity/physiopathology
7.
Braz J Med Biol Res ; 42(9): 824-30, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19738988

ABSTRACT

The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 microg/kg) reduced mean arterial pressure from 88 +/- 12 to 42 +/- 7 mmHg and increased heart rate from 335 +/- 38 to 402 +/- 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 microg/kg infused over a period of 5 min) from 35 +/- 3 to 10 +/- 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.


Subject(s)
Bradykinin/analogs & derivatives , Cardiotonic Agents/therapeutic use , Kinins/drug effects , Myocardial Infarction/prevention & control , Vasodilator Agents/therapeutic use , Acute Disease , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Bradykinin/therapeutic use , Captopril/pharmacology , Chickens , Disease Models, Animal , Ischemic Preconditioning, Myocardial , Kinins/blood , Kinins/physiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Preoperative Care , Vascular Resistance/drug effects
8.
Braz. j. med. biol. res ; 42(9): 824-830, Sept. 2009. ilus, graf
Article in English | LILACS | ID: lil-524318

ABSTRACT

The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2 percent of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.


Subject(s)
Animals , Bradykinin/analogs & derivatives , Cardiotonic Agents/therapeutic use , Kinins/drug effects , Myocardial Infarction/prevention & control , Vasodilator Agents/therapeutic use , Acute Disease , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Blood Pressure/drug effects , Bradykinin/therapeutic use , Chickens , Captopril/pharmacology , Disease Models, Animal , Ischemic Preconditioning, Myocardial , Kinins/blood , Kinins/physiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Preoperative Care , Vascular Resistance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...