Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 25(6): 558-69, 2007.
Article in English | MEDLINE | ID: mdl-17706395

ABSTRACT

Laccases have received much attention from researchers during the past decades due to their broad substrate specificity and to the fact that they use molecular oxygen as the final electron acceptor instead of hydrogen peroxide as used by peroxidases. This makes laccases highly interesting for a wide variety of processes, such as textile dye decolouration, pulp bleaching, effluent detoxification, biosensors and bioremediation. The successful application of laccases to the above-mentioned processes requires the production of large quantities of enzyme at low cost. Filamentous fungi are able to produce laccases in high amounts, however, an efficient production system at bioreactor scale is still lacking. This is mainly due to the fact that laccase production by wild-type strains of filamentous fungi is linked to secondary metabolism, which implies that the following drawbacks must be overcome: uncontrolled fungal growth, the formation of polysaccharides around mycelia and the secretion of certain compounds (i.e. proteases) that inactivate laccases. This review summarizes the current status of laccase production by wild-type strains of filamentous fungi at the bioreactor scale.


Subject(s)
Bioreactors/microbiology , Cell Culture Techniques/methods , Fungal Proteins/metabolism , Fungi/enzymology , Industrial Microbiology/methods , Laccase/biosynthesis
2.
J Hazard Mater ; 147(3): 900-5, 2007 Aug 25.
Article in English | MEDLINE | ID: mdl-17321679

ABSTRACT

In this paper, the potential of two low-cost adsorbents such as sunflower seed shells (SS) and mandarin peelings (MP) in the removal of the synthetic anionic dye Reactive Black 5 (RB5) from aqueous solutions was investigated. SS led to a percentage of dye removal higher than MP (85% and 71% after 210min, respectively, for an initial RB5 concentration of 50mgL(-1) and an initial pH of 2.0). The rate of adsorption followed a pseudo-second-order kinetic model and the intra-particle diffusion was found to be the rate-controlling stage. In addition, the equilibrium data fitted well both the Freundlich and multilayer adsorption isotherm equations indicating the heterogeneity of the adsorbent surface. This was also corroborated by the SEM photographs. On the whole, the results in this study indicated that SS were very attractive materials for removing anionic dyes from dyed effluents.


Subject(s)
Helianthus/chemistry , Naphthalenesulfonates/isolation & purification , Seeds/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Costs and Cost Analysis , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Particle Size , Solutions
3.
Chemosphere ; 67(8): 1677-80, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17234250

ABSTRACT

In the present study, we investigated the effect of different carbon sources (glucose, glycerol and ground mandarin peelings) on laccase production by Trametes pubescens grown on stainless steel sponges under static conditions. The cultures with ground mandarin peelings gave the highest laccase activities, showing values of about 100 U l(-1). This is a very interesting result, since mandarin peelings are common agricultural wastes in some regions such as Mediterranean and Asiatic countries. Therefore, their reutilisation, besides reducing medium cost, also helps to solve the pollution problems caused by their disposal. Also, we studied the effect of supplementing the culture medium with different potential laccase-inducing compounds (ABTS, Tween 20, soya oil, Malaquite Green, Cu(2+), tannic acid) on laccase production. Soya oil was the best inducer of laccase activities, attaining values 4-fold higher than those obtained in the reference cultures.


Subject(s)
Carbon/metabolism , Citrus , Fruit/metabolism , Laccase/biosynthesis , Polyporales/enzymology , Enzyme Induction , Hydrophobic and Hydrophilic Interactions , Polyporales/growth & development , Stainless Steel
4.
Chemosphere ; 64(3): 359-70, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16473393

ABSTRACT

During degradation of trinitrotoluene (TNT) by Trametes modesta, addition of humic monomers prevented the accumulation of all major stable TNT metabolites (aminodinitrotoluenes [AMDNT]) by at least 92% in the presence of 200 mM ferulic acid and guaiacol. Acute toxicity tests with individual TNT metabolites and in T. modesta cultures supplemented with 200 microM TNT demonstrated that the TNT biodegradation process lead to less toxic metabolites. Toxicity decreased in the order TNT>4-HADNT (4-hydroxylaminodinitrotoluene)>2-HADNT>2,6-DNT (2,6-dinitrotoluene)>2',2',6,6-azoxytetranitrotoluene>4-AMDNT>2-AMDNT>2,4-diamninonitrotoluene (2,4-DAMNT) while 2,4-DNT and 2,6-DAMNT were the least toxic. Ferulic acid is the best candidate for immobilization TNT biodegradation metabolites since it prevented the accumulation of AMDNTs in cultures during TNT biodegradation and its products were less toxic. All humic monomers were very effective in immobilizing 2-HADNT [100%], 4-HADNT [100%] and 2,2,6,6-azoxytetranitrotoluene [100%]. Two distinct laccase isoenzymes (LTM1 and LTM2) potentially involved in immobilization of TNT degradation products were purified to electrophoretic homogeneity. LTM1 and LTM2 have molecular weights of 77.6 and 52.5 kDa, are 18% and 24% glycosylated, have pI values of 3.6 and 4.2, respectively. Both enzymes oxidized all the typical laccase substrates tested. LTM1 showed highest kinetic constants (K(m)=0.03 microM; K(cat)=8.8 4x 10(7)s(-1)) with syringaldazine as substrate.


Subject(s)
Basidiomycota/enzymology , Humic Substances , Laccase/metabolism , Trinitrotoluene/analysis , Trinitrotoluene/metabolism , Aliivibrio fischeri/drug effects , Basidiomycota/growth & development , Biodegradation, Environmental , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Isoenzymes , Kinetics , Oxidation-Reduction , Substrate Specificity , Temperature , Trinitrotoluene/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...