Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biofouling ; 26(5): 539-53, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20526914

ABSTRACT

This study used a specially designed MAGPLATE system to quantify the en route survivorship and post-voyage recovery of biofouling assemblages subjected to short voyages (< 12 h) across a range of vessel speeds (slow, medium, fast; in the range 4.0-21.5 knots). The effect of hull location (bow, amidships and stern) was also examined. While no significant differences were evident in en route survivorship of biofouling organisms amongst hull locations, biofouling cover and richness were markedly reduced on faster vessels relative to slower craft. Therefore, the potential inoculum size of non-indigenous marine species and richness is likely to be reduced for vessels that travel at faster speeds (> 14 knots), which is likely to also reduce the chances of successful introductions. Despite this, the magnitude of introductions from biofouling on fast vessels can be considered minor, especially for species richness where 90% of source-port species were recorded at destinations.


Subject(s)
Biofouling , Invertebrates/classification , Invertebrates/growth & development , Ships , Animals , Biodiversity , Marine Biology/methods , New Zealand , Population Dynamics , Species Specificity
2.
Biofouling ; 26(5): 555-66, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20526980

ABSTRACT

The present study tested two diver-operated rotating brush systems, coupled with suction and collection capabilities, to determine their efficacy in the management of vessel biofouling. Both rotating brush systems proved effective (> 80%) in removing low-to-moderate levels of fouling from flat and curved experimental surfaces (Perspex plates). However, performance was generally poorer at removing more advanced levels of fouling. In particular, mature calcareous organisms were relatively resistant to the rotating brushes, with a high proportion (up to 50%) remaining on plates following treatment. On average, > 95% of defouled material was collected and retained by both systems. The amount of lost material generally increased when treating curved plates with increasing biomass, whereas the material lost from flat plates was typically less and remained relatively constant throughout the trials. The majority (> 80%) of fouling not captured by the systems was crushed by the brushes (ie non-viable). However, a diverse range of viable organisms (eg barnacles and hydroids) was lost to the environment during the defouling trials. When defouling a vessel, unintentional detachment of fouling organisms is likely to be high through physical disturbance by divers operating the devices and by associated equipment (eg hoses). Furthermore, residual biosecurity risks are also likely to remain due to diver error, persistent fouling remaining on treated surfaces and the inaccessibility of niche areas to the brush systems. To address these limitations, further research into alternative treatment methods is required.


Subject(s)
Biofouling/prevention & control , Invertebrates/growth & development , Marine Biology/methods , Ships , Animals , Bryozoa/growth & development , Eukaryota/growth & development , Invertebrates/classification , Marine Biology/instrumentation , Polychaeta/growth & development , Rotation , Surface Properties
3.
Mar Pollut Bull ; 60(9): 1533-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20553694

ABSTRACT

Vessels found contaminated with biofouling non-indigenous marine species are predominantly removed from the water and treated in vessel maintenance facilities (i.e., slipways, travel lifts and dry-docks). Using pre-fouled settlement plates to simulate a vessel's removal from the water for treatment, we demonstrate that a range of mobile organisms (including non-indigenous marine species) may be lost to the marine environment as a consequence of this process. We also determined that different levels of biofouling (primary, secondary and tertiary) and emersion durations (0.5, 5 and 15 min) affected the abundance and composition of mobile taxa lost to the marine environment. Primary biofouling plates lost 3.2% of total animals, secondary plates lost 19.8% and tertiary plates lost 8.2%, while hanging duration had only minor effects. The results suggest that removing vessels contaminated with biofouling non-indigenous marine species from the water for treatment may not be as biosecure as is currently recognised.


Subject(s)
Biofouling/prevention & control , Introduced Species , Invertebrates/physiology , Marine Biology/methods , Ships/methods , Animals
4.
Biofouling ; 26(1): 1-13, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20390551

ABSTRACT

This study experimentally determined the effect of different vessel voyage speeds (5, 10 and 18 knots = 2.6, 5.1 and 9.3 ms(-1), respectively) and morphological characteristics including growth form (solitary or colonial), profile (erect or encrusting) and structure (soft, hard or flexible) on the survival of a range of common biofouling organisms. A custom built hydrodynamic keel attached to the bottom of a 6 m aluminium powerboat was used to subject pre-fouled settlement plates for this purpose. Vessel speeds of 5 and 10 knots had little effect on the species richness of biofouling assemblages tested, however richness decreased by 50% following 18 knots treatments. Species percentage cover decreased with increasing speed across all speed treatments and this decrease was most pronounced at 10 and 18 knots, with cover reduced by 24 and 85% respectively. Survival was greatest for organisms with colonial, encrusting, hard and/or flexible morphological characteristics, and this effect increased with increasing speed. This study suggests that there is predictive power in forecasting future introductions if we can understand the extent to which such traits explain the world-wide distributions of non-indigenous species. Future introductions are a certainty and can only provide an increasing source of new information on which to test the validity of these predications.


Subject(s)
Biofouling , Invertebrates/growth & development , Marine Biology/methods , Ships , Animals , Invertebrates/classification , Population Dynamics , Species Specificity
5.
Mar Pollut Bull ; 54(7): 875-86, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17498747

ABSTRACT

A total of 150 different organisms, including one plant species and 12 animal phyla were identified from sea-chests of 42 vessels visiting or operating in New Zealand between May 2000 and November 2004. Forty-nine percent of organisms were sessile, 42% mobile adults and the remaining 9% sedentary. Decapods were the most represented group with 19 species present among 79% of vessels. Forty percent of organisms were indigenous to New Zealand, 15% introduced, 10% non-indigenous, and 35% of unknown origin. Sea-chests have the potential to (1) transfer non-indigenous organisms between countries across oceanic boundaries; and (2) disperse both indigenous and introduced organisms domestically. The occurrence of adult mobile organisms is particularly significant and indicates that sea-chests may be of greater importance than ballast water or hull fouling for dispersing certain marine species. These findings emphasise the need to assess and manage biosecurity risks for entire vessels rather than different mechanisms (i.e., ballast water, hull fouling, sea-chests, etc.) in isolation.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Marine Biology/methods , Animals , Environmental Monitoring/legislation & jurisprudence , Geography , Humans , New Zealand , Oceans and Seas , Program Evaluation , Risk Assessment/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...