Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 75: 399-412, 2017 11.
Article in English | MEDLINE | ID: mdl-28803114

ABSTRACT

The influence of ageing on the fracture mechanics of cortical bone tissue is well documented, though little is known about if and how related material properties are further affected in two of the most prominent musculoskeletal diseases, osteoporosis and osteoarthritis (OA). The femoral neck, in close proximity to the most pertinent osteoporotic fracture site and near the hip joint affected by osteoarthritis, is a site of particular interest for investigation. We have recently shown that Reference Point micro-Indentation (RPI) detects differences between cortical bone from the femoral neck of healthy, osteoporotic fractured and osteoarthritic hip replacement patients. RPI is a new technique with potential for in vivo bone quality assessment. However, interpretation of RPI results is limited because the specific changes in bone properties with pathology are not well understood and, further, because it is not conclusive what properties are being assessed by RPI. Here, we investigate whether the differences previously detected between healthy and diseased cortical bone from the femoral neck might reflect changes in fracture toughness. Together with this, we investigate which additional properties are reflected in RPI measures. RPI (using the Biodent device) and fracture toughness tests were conducted on samples from the inferomedial neck of bone resected from donors with: OA (41 samples from 15 donors), osteoporosis (48 samples from 14 donors) and non age-matched cadaveric controls (37 samples from 10 donoros) with no history of bone disease. Further, a subset of indented samples were imaged using micro-computed tomography (3 osteoporotic and 4 control samples each from different donors) as well as fluorescence microscopy in combination with serial sectioning after basic fuchsin staining (7 osteoporotic and 5 control samples from 5 osteoporotic and 5 control donors). In this study, the bulk indentation and fracture resistance properties of the inferomedial femoral neck in osteoporotic fracture, severe OA and control bone were comparable (p > 0.05 for fracture properties and <10% difference for indentation) but fracture toughness reduced with advancing age (7.0% per decade, r = -0.36, p = 0.029). Further, RPI properties (in particular, the indentation distance increase, IDI) showed partial correlation with fracture toughness (r = -0.40, p = 0.023) or derived elastic modulus (r = -0.40, p = 0.023). Multimodal indent imaging revealed evidence of toughening mechanisms (i.e. crack deflection, bridging and microcracking), elastoplastic response (in terms of the non-conical imprint shape and presence of pile-up) and correlation of RPI with damage extent (up to r = 0.79, p = 0.034) and indent size (up to r = 0.82, p < 0.001). Therefore, crack resistance, deformation resistance and, additionally, micro-structure (porosity: r = 0.93, p = 0.002 as well as pore proximity: r = -0.55, p = 0.027 for correlation with IDI) are all contributory to RPI. Consequently, it becomes clear that RPI measures represent a multitude of properties, various aspects of bone quality, but are not necessarily strongly correlated to a single mechanical property. In addition, osteoporosis or osteoarthritis do not seem to further influence fracture toughness of the inferomedial femoral neck beyond natural ageing. Since bone is highly heterogeneous, whether this finding can be extended to the whole femoral neck or whether it also holds true for other femoral neck quadrants or other material properties remains to be shown.


Subject(s)
Age Factors , Femur Neck/pathology , Fractures, Bone/pathology , Osteoporosis/pathology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone Density , Female , Femur , Humans , Male , Middle Aged , X-Ray Microtomography
2.
J Biomech ; 49(1): 94-99, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26684433

ABSTRACT

There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants.


Subject(s)
Arm/physiopathology , Breast Neoplasms/physiopathology , Lymphedema/physiopathology , Skin/physiopathology , Adult , Aged , Anisotropy , Breast/physiopathology , Female , Healthy Volunteers , Humans , Middle Aged
3.
J Mech Behav Biomed Mater ; 46: 292-304, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25837158

ABSTRACT

Reference Point Indentation (RPI) has been proposed as a new clinical tool to aid the diagnosis of Osteoporosis. This study has examined the performance of the tool within entire femurs to improve the understanding of the mechanical properties of bone and also to guide future RPI testing to optimize repeatability of results obtained using the technique. Human, bovine, porcine and rat femurs were indented along three longitudinal axes: anterior and posterior: medial and lateral as well as around the circumference of the femoral head and neck. Cortical and subchondral bone thickness was measured using CT and radiography. The study shows that in some samples, bone is too thin to support the high loads applied with the technique and in these cases, RPI values are highly influenced by thickness. The technique will be useful in the mid-shaft region where cortical thickness is greatest, providing previously established guidelines are followed to optimize measurement repeatability, including performing multiple measurements per sample and investigating multiple samples. The study has also provided evidence that RPI values vary significantly with test site, hence mechanical properties should not be inferred from RPI findings alone away from the test site, even within the same bone. In conclusion, RPI appears to be a useful tool for scientific investigation; however further work is required to examine the feasibility of using RPI for assessing differences between healthy and diseased bone in a clinical setting.


Subject(s)
Femur , Materials Testing/methods , Mechanical Phenomena , Aged , Aged, 80 and over , Animals , Cattle , Female , Femur/diagnostic imaging , Humans , Male , Middle Aged , Osteoporosis/diagnosis , Rats , X-Ray Microtomography
4.
J Mech Behav Biomed Mater ; 42: 311-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25455607

ABSTRACT

Reference Point Indentation (RPI) is a novel microindentation tool that has emerging clinical potential for the assessment of fracture risk as well as use as a laboratory tool for straight-forward mechanical characterisation of bone. Despite increasing use of the tool, little research is available to advise the set-up of testing protocols or optimisation of testing parameters. Here we consider five such parameters: maximum load, sample orientation, mode of use, sample preparation and measurement spacing, to investigate how they affect the Indentation Distance Increase (IDI), the most published measurement parameter associated with the RPI device. The RPI tool was applied to bovine bone; indenting in the proximal midshaft of five femora and human bone; indenting five femoral heads and five femoral neck samples. Based on the findings of these studies we recommend the following as the best practice. (1) Repeat measurements should be utilised to reduce the coefficient of variation (e.g. 8-15 repeats to achieve a 5-10% error, however the 3-5 measurements used here gives a 15-20% error). (2) IDI is dependent on maximum load (r=0.45 on the periosteal surface and r=0.94 on the machined surface, p<0.05), mode of use (i.e. comparing the device held freehand compared to fixed in its stand, p=0.04) and surface preparation (p=0.004) so these should be kept consistent throughout testing. Though sample orientation appears to have minimal influence on IDI (p>0.05), care should also be taken in combining measurements from different orientations. (3) The coefficient of variation is higher (p=0.04) when holding the device freehand, so it should ideally be kept supported in its stand. (4) Removing the periosteum (p=0.04) and machining the surface of the bone (p=0.08) reduces the coefficient of variation, so should be performed where practical. (5) There is a hyperbolic relationship between thickness and IDI (p<0.001) with a sample thickness 10 fold greater than the maximum indentation depth recommended, to ensure a representative measurement. (6) Measurement spacing does not appear to influence the IDI (p>0.05), so it can be as low as 500 µm. By following these recommendations, RPI users can minimise the potential confounding effects associated with the variables investigated here and reduce the coefficient of variation, hence achieving more consistent testing. This optimisation of the technique enhances both the clinical and laboratory potential of the tool.


Subject(s)
Femur/physiology , Materials Testing/standards , Mechanical Phenomena , Specimen Handling , Aged , Aged, 80 and over , Animals , Biomechanical Phenomena , Cattle , Female , Humans , Male , Reference Standards , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...