Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
mBio ; 14(5): e0359322, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37642423

ABSTRACT

IMPORTANCE: Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.


Subject(s)
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism , Temperature , Heat-Shock Response
3.
Methods Mol Biol ; 2516: 39-50, 2022.
Article in English | MEDLINE | ID: mdl-35922620

ABSTRACT

DNA methylations are one of the most well-known epigenetic modifications along with histone modifications and noncoding RNAs. They are found at specific sites along the DNA in all domains of life, with 5-mC and 6-mA/4-mC being well-characterized in eukaryotes and bacteria respectively, and they have not only been described as contributing to the structure of the double helix itself but also as regulators of DNA-based processes such as replication, transcription, and recombination. Different methods have been developed to accurately identify and/or map methylated motifs to decipher the involvement of DNA methylations in regulatory networks that affect the cellular state.Although DNA methylations have been detected along archaeal genomes, their involvement as regulators of DNA-based processes remains the least known. To highlight the importance of DNA methylations in the control of key cellular mechanisms and their dynamics in archaea cells, we have used single-molecule real-time (SMRT) sequencing. This sequencing technology allows the identification and direct mapping of the methylated motifs along the genome of an organism. In this chapter, we present a step-by-step protocol for detecting DNA methylations in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius using SMRT sequencing. This protocol can easily be adapted to other prokaryotes.


Subject(s)
Sulfolobus acidocaldarius , DNA/metabolism , DNA Methylation , Genome, Archaeal , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism
4.
Biomolecules ; 12(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35454113

ABSTRACT

In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species Sulfolobus acidocaldarius and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning. Here, a combination of in vitro and in vivo methodologies is used to study the DNA-binding properties of Sul12a, an uncharacterized small basic protein conserved in several Sulfolobales species displaying a winged helix-turn-helix structural motif and annotated as a transcription factor. Genome-wide chromatin immunoprecipitation and target-specific electrophoretic mobility shift assays demonstrate that Sul12a of S. acidocaldarius interacts with DNA in a non-sequence specific manner, while atomic force microscopy imaging of Sul12a-DNA complexes indicate that the protein induces structural effects on the DNA template. Based on these results, and a contrario to its initial annotation, it can be concluded that Sul12a is a novel chromatin-organizing protein.


Subject(s)
Archaeal Proteins , Sulfolobus acidocaldarius , Archaea/genetics , Archaeal Proteins/metabolism , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA/metabolism , DNA-Binding Proteins/metabolism , Sulfolobales/genetics , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism
5.
Front Microbiol ; 12: 661411, 2021.
Article in English | MEDLINE | ID: mdl-34113328

ABSTRACT

The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.

6.
Mol Microbiol ; 113(2): 356-368, 2020 02.
Article in English | MEDLINE | ID: mdl-31713907

ABSTRACT

Maintaining an appropriate DNA topology with DNA-based processes (DNA replication, transcription and recombination) is crucial for all three domains of life. In bacteria, the homeostatic regulation for controlling DNA supercoiling relies on antagonistic activities of two DNA topoisomerases, TopoI and gyrase. In hyperthermophilic crenarchaea, the presence of such a regulatory system is suggested as two DNA topoisomerases, TopoVI and reverse gyrase, catalyze antagonistic activities. To test this hypothesis, we estimated and compared the number of the TopoVI with that of the two reverse gyrases, TopR1 and TopR2, in Sulfolobus solfataricus cells maintained either at 80 or at 88°C, or reciprocally shifted from one temperature to the other. From the three DNA topoisomerases, TopR1 is the only one exhibiting significant quantitative variations in response to the up- and down-shifts. In addition, the corresponding intrinsic activities of these three DNA topoisomerases were tested in vitro at both temperatures. Although temperature modulates the three DNA topoisomerases activities, TopR1 is the sole topoisomerase able to function at high temperature. Altogether, results presented in this study demonstrate, for the first time, that the DNA topological state of a crenarchaeon is regulated via a homeostatic control, which is mainly mediated by the fine-tuning of TopR1.


Subject(s)
Archaea , Archaeal Proteins/metabolism , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases/metabolism , Sulfolobus solfataricus , Archaea/genetics , Archaea/metabolism , DNA, Bacterial , DNA, Superhelical , Homeostasis , Hot Temperature , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
7.
Front Microbiol ; 9: 137, 2018.
Article in English | MEDLINE | ID: mdl-29472906

ABSTRACT

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N6-methyl-adenine (m6A), N4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.

8.
BMC Mol Biol ; 15: 18, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25200003

ABSTRACT

BACKGROUND: Reverse gyrases are DNA topoisomerases characterized by their unique DNA positive-supercoiling activity. Sulfolobus solfataricus, like most Crenarchaeota, contains two genes each encoding a reverse gyrase. We showed previously that the two genes are differently regulated according to temperature and that the corresponding purified recombinant reverse gyrases have different enzymatic characteristics. These observations suggest a specialization of functions of the two reverse gyrases. As no mutants of the TopR genes could be obtained in Sulfolobales, we used immunodetection techniques to study the function(s) of these proteins in S. solfataricus in vivo. In particular, we investigated whether one or both reverse gyrases are required for the hyperthermophilic lifestyle. RESULTS: For the first time the two reverse gyrases of S. solfataricus have been discriminated at the protein level and their respective amounts have been determined in vivo. Actively dividing S. solfataricus cells contain only small amounts of both reverse gyrases, approximately 50 TopR1 and 125 TopR2 molecules per cell at 80°C. S. solfataricus cells are resistant at 45°C for several weeks, but there is neither cell division nor replication initiation; these processes are fully restored upon a return to 80°C. TopR1 is not found after three weeks at 45°C whereas the amount of TopR2 remains constant. Enzymatic assays in vitro indicate that TopR1 is not active at 45°C but that TopR2 exhibits highly positive DNA supercoiling activity at 45°C. CONCLUSIONS: The two reverse gyrases of S. solfataricus are differently regulated, in terms of protein abundance, in vivo at 80°C and 45°C. TopR2 is present both at high and low temperatures and is therefore presumably required whether cells are dividing or not. By contrast, TopR1 is present only at high temperature where the cell division occurs, suggesting that TopR1 is required for controlling DNA topology associated with cell division activity and/or life at high temperature. Our findings in vitro that TopR1 is able to positively supercoil DNA only at high temperature, and TopR2 is active at both temperatures are consistent with them having different functions within the cells.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Sulfolobus solfataricus/cytology , Sulfolobus solfataricus/enzymology , Amino Acid Sequence , DNA Topoisomerases, Type I/analysis , DNA, Superhelical/metabolism , Hot Temperature , Molecular Sequence Data , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/physiology
9.
Biochim Biophys Acta ; 1807(3): 293-301, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21172302

ABSTRACT

Photosynthetic organisms have developed photoprotective mechanisms to protect themselves from lethal high light intensities. One of these mechanisms involves the dissipation of excess absorbed light energy into heat. In cyanobacteria, light activation of a soluble carotenoid protein, the Orange Carotenoid Protein (OCP), binding a keto carotenoid, is the key inducer of this mechanism. Blue-green light absorption triggers structural changes within the carotenoid and the protein, leading to the conversion of a dark orange form into a red active form. Here we report the role in photoconversion and photoprotection of individual conserved tyrosines and tryptophans surrounding the rings of the carotenoid. Our results demonstrate that the interaction between the keto group of the carotenoid and Tyr201 and Trp288 is essential for OCP photoactivity. In addition, these amino acids are responsible for carotenoid affinity and specificity. We have already demonstrated that the aromatic character of Tyr44 and Trp110 interacting with the hydroxyl ring is critical. Here we show that the replacement of Tyr44 by Ser affects the stability of the red form avoiding its accumulation at any temperature, while Trp110Ser is affected in the energy necessary to the orange to red conversion and in the interaction with the antenna. Collectively our data support the idea that the red form is essential for photoprotection but not sufficient. Specific conformational changes occurring in the protein seem to be critical to the events leading to energy dissipation.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Light , Photochemistry , Photosynthesis/radiation effects , Tryptophan/metabolism , Tyrosine/metabolism , Carotenoids/metabolism , Cyanobacteria/genetics , Hydrogen Bonding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...