Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Dis ; 98(12): 1739, 2014 Dec.
Article in English | MEDLINE | ID: mdl-30703900

ABSTRACT

The causal agent of Asiatic citrus canker, Xanthomonas citri pv. citri, is a bacterium of major economic importance in tropical and subtropical citrus-producing areas. X. citri pv. citri pathotype A can cause severe infection in a wide range of citrus species and induces erumpent, callus-like lesions with water-soaked margins evolving to corky cankers and leading to premature fruit, leaf drop, and twig dieback on susceptible cultivars. This quarantine organism can strongly impact citrus markets so it has consequently been subjected to eradication efforts and international quarantine regulations. Asiatic citrus canker occurs on most islands in the Southwest Indian Ocean region including the Mascarene and Seychelles archipelagos. In the Comoros archipelago, the disease was observed for the first time in Mohéli island in 1966 (2), but had not yet been reported in neighboring islands, Grande Comore and Anjouan. In September 2013, leaves of key lime (Citrus aurantifolia) and sweet orange (C. sinensis) showing symptoms of citrus canker were collected from Anjouan, Grande Comore, and Mohéli. Nine Xanthomonas-like strains (three from each of the three islands) were isolated using KC semi-selective medium (5) from diseased samples (LK126-3, LK127-7, LK128-2, LK131-10, LK137-1, LK141-3, LK144-5, LK145-5, LK146-2). Based on a specific PCR assay with 4/7 primers (4), all Xanthomonas-like strains were tentatively identified as X. citri pv. citri. All strains produced a 468-bp amplicon similar to X. citri pv. citri strain IAPAR 306 used as a positive control. Negative control reactions with sterile tris buffer did not produce amplicons. Multilocus sequence analysis (MLSA) targeting six housekeeping genes (atpD, dnaK, efp, gltA, gyrB, and lepA) (1,3) fully identified all strains from the Comoros as X. citri pv. citri. More specifically, eight strains were identified as sequence type ST2 composed of pathotype A strains of X. citri pv. citri (3) (including all strains from the Southwest Indian Ocean region) while one of them (LK141-3 from Mohéli) was identified as a new sequence type based on a non-synonymous single nucleotide polymorphism in gyrB (accession KJ941208). All strains were inoculated by a detached leaf assay (3) onto Mexican lime SRA 140 (C. aurantifolia), Tahiti lime SRA 58 (C. latifolia), sweet orange New Hall Navel SRA 343 (C. sinensis), grapefruit Henderson SRA 336 (C. paradisi), and Ortanique tangor SRA 110 (C. reticulata × C. sinensis). All citrus species inoculated produced typical erumpent, callus-like tissue at wound sites. Xanthomonas-like yellow colonies were re-isolated from lesions produced on Mexican lime. Boiled bacterial suspensions were assayed by PCR with 4/7 primers (4) and produced the expected amplicon, fulfilling Koch's postulates. No lesions developed on the negative control consisting of inoculations with sterile tris buffer. This is the first report of X. citri pv. citri-A causing Asiatic citrus canker in Grande Comore and Anjouan islands confirming the wide distribution of the pathogen in Southwest Indian Ocean islands. Canker-free nurseries and grove sanitation should be implemented to decrease the prevalence of Asiatic canker in the Comoros. References: (1) N. F. Almeida et al. Phytopathology 100:208, 2010. (2) J. Brun. Fruits 26:533, 1971. (3) L. Bui Thi Ngoc et al. Int. J. Syst. Evol. Microbiol. 60:515, 2010. (4) J. S. Hartung et al. Phytopathology 86:95, 1996. (5) O. Pruvost et al. J. Appl. Microbiol. 99:803, 2005.

2.
J Econ Entomol ; 106(2): 683-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23786055

ABSTRACT

Miscanthus is a perennial C4-grass that has received much interest as a potential of impact on the local agroecosytem. In this context, laboratory experiments were conducted to investigate the potential colonization of this new exotic plant species by three of the main aphid pest species of common crops in Picardie, northern France. In host preference experiments, the two polyphagous aphid species studied, Aphis fabae (Scop) and Myzus persicae (Sulzer), exhibited an xclusive preference for their host plant, whereas the cereal specialist Rhopalosiphum padi (L.) showed no preference between its host plant and miscanthus. When assessed by electrical penetration graph technique, plant tissue probing activity by all three species always was characterized by pathway phases including potential drops that are typically associated to the transmission of noncirculative viruses. Phloem ingestion was observed in 5% of the polyphagous aphid individuals tested and in 20% of the R. padi tested. Aphids kept in clip-cages on miscanthus had a low survival rate and were unable to reproduce. These results demonstrate that miscanthus is not a suitable host for these three main aphid pest species but could act as a potential host for some viruses transmitted in a noncirculative manner and also in a circulative nonpropagative manner. The use of miscanthus as a barrier crop to limit the flow of aphid vectors and their phytoviruses is discussed.


Subject(s)
Aphids/physiology , Crops, Agricultural/physiology , Animals , Choice Behavior , Electrophysiological Phenomena , Food Preferences , France , Poaceae , Species Specificity
3.
Plant Dis ; 96(1): 82-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-30731852

ABSTRACT

The effects of the infection of potato (Solanum tuberosum) plants by the nonpersistent Potato virus Y (PVY) were studied on the host plant colonization behavior of different colonizing (Myzus persicae) and noncolonizing (Aphis fabae, Brevicoryne brassicae, and Sitobion avenae) aphid species. The underlying questions of this study were to know how aphids respond when faced with PVY-infected plants and whether plant infection can modify the aphid behavior involved in PVY spread. Short-range orientation behavior was observed using a dual-choice set-up and aphid feeding behavior was monitored using the electrical penetration graph technique. None of the aphid species discriminated between healthy and PVY-infected plants. Nevertheless, most individuals of M. persicae landed on and probed only in one plant whereas noncolonizing aphid species exhibited interplant movements. Study of the aphid feeding behavior showed that PVY infection essentially modified phloem and xylem ingestion. M. persicae and S. avenae exhibited an increased duration of phloem phases on PVY-infected plants whereas A. fabae showed a decreased duration of phloem phases that benefited from an increased duration of xylem ingestion phases. None of these parameters were changed in B. brassicae. These data present evidence that aphids can respond to plants infected by nonpersistent viruses. Such behavioral modifications are discussed within the context of PVY spread in potato crops.

4.
J Insect Physiol ; 51(8): 941-51, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15936030

ABSTRACT

Protease inhibitors (PIs) have been shown to cause lethal and sublethal effects on aphids depending on the kind of PI and aphid species. Therefore, these proteins might affect aphid parasitoids directly by inhibiting their digestive proteolysis or indirectly via their development in a less suitable host. In our study, the risk of exposure and the potential effects of soybean Bowman-Birk inhibitor (SbBBI) and oryzacystatin I (OCI) on the aphid endoparasitoid Aphidius ervi were investigated using artificial diet to deliver PIs. Immunoassays showed that both SbBBI and OCI were detected in the honeydew of aphids reared on artificial diet containing these recombinant proteins at 100 microg/mL. However, only SbBBI was detected in parasitoid larvae, while this PI could not be detected in adult parasitoids emerged from PI-intoxicated aphids. Enzymatic inhibition assays showed that digestive proteolytic activity of larvae and adults of A. ervi predominantly relies on serine proteases and especially on chymotrypsin-like activity. Bioassays using SbBBI and OCI on artificial diet were performed. A. ervi that developed on intoxicated aphids had impaired fitness. Thus development and parasitism success of parasitoids exposed to OCI were severely affected. On the contrary, SbBBI only altered significantly female size and sex ratio. Direct exposure to PIs through adult food intake did not affect female's longevity, while SbBBI and OCI (100 microg/mL) induced 69% and 30% inhibition of digestive protease activity, respectively. These studies made it possible to estimate the risk of exposure to plant PIs and the sensitivity of the aphid parasitoid A. ervi to these entomotoxins, by combining immunological, biochemical and biological approaches. First it pointed out that only immature stages are affected by PIs. Secondly, it documented two different modes of effect, according to the nature of the PIs and both host and parasitoid susceptibility. OCI prevented the development of A. ervi mainly due to the host susceptibility, whereas SbBBI only induced sublethal effects on the parasitoid, possibly due to both direct action on the parasitoid susceptible proteases, and host-mediated action through size reduction.


Subject(s)
Cystatins/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Hymenoptera/drug effects , Trypsin Inhibitor, Bowman-Birk Soybean/pharmacology , Trypsin Inhibitors/pharmacology , Animals , Aphids , Host-Parasite Interactions , Larva
5.
J Insect Physiol ; 47(6): 553-561, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11249943

ABSTRACT

Snowdrop lectin (Galanthus nivalis agglutinin, GNA), has been shown to confer partial resistance to two potato aphids Myzus persicae and Aulacorthum solani, when incorporated in artificial diet and/or expressed in transgenic potato. First-tier laboratory-scale experiments were conducted to assess the potential effect of GNA on the aphid parasitoid Aphelinus abdominalis. GNA (0.1% w/v) was successfully delivered to Macrosiphum euphorbiae via artificial diet and induced a reduced growth rate and increased mortality compared to aphids fed a control diet. As aphid parasitoid larvae are endophagous, they may be exposed to GNA during their larval development and potential "chronic toxicity" on A. abdominalis was investigated. The amounts of GNA present in aphid and parasitoid tissues were estimated by western blotting. Results suggest that parasitoids excrete most of the GNA ingested. Sublethal effects of GNA on several parasitoid fitness parameters (parasitism success, parasitoid development and size, emergence success, progeny survival and sex ratio) were studied. No direct detrimental effect of GNA on A. abdominalis was observed. However, GNA had an indirect host-size-mediated effect on the sex ratio and the size of parasitoids developing in GNA-fed aphids. This work highlights the need to determine the exact "causes and effects" when assessing the ecological impact of transgenic plants on non-target beneficial insects. Such bioassays form the basis of a tiered risk assessment moving from laboratory studies assessing individuals towards field-scale experiments assessing populations.

6.
J Insect Physiol ; 47(12): 1357-1366, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12770142

ABSTRACT

Aphid parasitoids are important biological control agents. The possibility arises that whilst foraging on insect-resistant transgenic plants, they are themselves at risk from direct and indirect effects of the expression of a transgene used to control the pest species. A liquid artificial diet was successfully used to deliver the snowdrop lectin (Galanthus nivalis agglutinin; GNA) to the peach-potato aphid, Myzus persicae. Bioassays utilising artificial diet incorporating GNA, and excised leaves of the GNA-expressing transgenic potato line, GNA2#28, were performed to assess the potential effects of GNA on the development of the aphid parasitoid Aphidius ervi. The results indicate that GNA delivered via artificial diet to the aphids can be transferred through the trophic levels and has a dose-dependent effect on parasitoid development. Parasitoid larvae excreted most of the ingested GNA in the meconium but some of it was detected in the pupae. Although A. ervi development was not affected when developing within hosts feeding on transgenic potato leaves, this probably reflected sub-optimal expression of the toxin in the transgenic potato line used

SELECTION OF CITATIONS
SEARCH DETAIL
...