Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37514275

ABSTRACT

Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.

2.
Membranes (Basel) ; 13(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37505009

ABSTRACT

The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.

3.
Nanomaterials (Basel) ; 13(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37299648

ABSTRACT

Adsorption of toxic compounds from water using zeolites and magnetite was developed due to the various advantages of their applicability. In the last twenty years, the use of zeolite-based compositions in the form of zeolite/inorganic or zeolite/polymer and magnetite has been accelerated for the adsorption of emergent compounds from water sources. The main adsorption mechanisms using zeolite and magnetite nanomaterials are high surface adsorption, ion exchange capacity and electrostatic interaction. This paper shows the capacity of Fe3O4 and ZSM-5 nanomaterials of adsorbing the emerging pollutant acetaminophen (paracetamol) during the treatment of wastewater. The efficiencies of the Fe3O4 and ZSM-5 in the wastewater process were systematically investigated using adsorption kinetics. During the study, the concentration of acetaminophen in the wastewater was varied from 50 to 280 mg/L, and the maximum Fe3O4 adsorption capacity increased from 25.3 to 68.9 mg/g. The adsorption capacity of each studied material was performed for three pH values (4, 6, 8) of the wastewater. Langmuir and Freundlich isotherm models were used to characterize acetaminophen adsorption on Fe3O4 and ZSM-5 materials. The highest efficiencies in the treatment of wastewater were obtained at a pH value of 6. Fe3O4 nanomaterial presented a higher removal efficiency (84.6%) compared to ZSM-5 nanomaterial (75.4%). The results of the experiments show that both materials have a potential to be used as an effective adsorbents for the removal of acetaminophen from wastewater.

4.
Biology (Basel) ; 12(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37372058

ABSTRACT

Heavy metal pollution of water from industrial discharge is a major problem worldwide. Thus, the quality of the environment and human health are severely affected. Various conventional technologies have been applied for water treatment, but these can be expensive, especially for industrial water treatment, and may have limited treatment efficiencies. Phytoremediation is a method that is successfully applied to remove metal ions from wastewater. In addition to the high efficiency of the depollution treatment, this method has the advantages of a low cost of the operation and the existence of many plants that can be used. This article presents the results of using algae (Sargassum fusiforme and Enteromorpha prolifera) to treat water containing manganese and lead ions. It was observed that maximum efficiencies for wastewater treatment were obtained when was used the algae Enteromorpha prolifera for a 600 min contact time period. The highest wastewater treatment efficiency obtained using Sargassum fusiforme was 99.46%.

5.
Membranes (Basel) ; 12(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35207157

ABSTRACT

Electrospinning is a unique technique that can be used to synthesize polymer and metal oxide nanofibers. In materials science, a very active field is represented by research on electrospun nanofibers. Fibrous membranes present fascinating features, such as a large surface area to volume ratio, excellent mechanical behavior, and a large surface area, which have many applications. Numerous techniques are available for the nanofiber's synthesis, but electrospinning is presented as a simple process that allows one to obtain porous membranes containing smooth non-woven nanofibers. Titanium dioxide (TiO2) is the most widely used catalyst in photocatalytic degradation processes, it has advantages such as good photocatalytic activity, excellent chemical stability, low cost and non-toxicity. Thus, titanium dioxide (TiO2) is used in the synthesis of nanofibrous membranes that benefit experimental research by easy recyclability, excellent photocatalytic activity, high specific surface areas, and exhibiting stable hierarchical nanostructures. This article presents the synthesis of fiber membranes through the processes of electrospinning, coaxial electrospinning, electrospinning and electrospraying or electrospinning and precipitation. In addition to the synthesis of membranes, the recent progress of researchers emphasizing the efficiency of nanofiber photocatalytic membranes in removing pollutants from wastewater is also presented.

6.
Membranes (Basel) ; 12(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35054593

ABSTRACT

This paper presents a comprehensive literature review surveying the most important polymer materials used for electrospinning processes and applied as membranes for the removal of emerging pollutants. Two types of processes integrate these membrane types: separation processes, where electrospun polymers act as a support for thin film composites (TFC), and adsorption as single or coupled processes (photo-catalysis, advanced oxidation, electrochemical), where a functionalization step is essential for the electrospun polymer to improve its properties. Emerging pollutants (EPs) released in the environment can be efficiently removed from water systems using electrospun membranes. The relevant results regarding removal efficiency, adsorption capacity, and the size and porosity of the membranes and fibers used for different EPs are described in detail.

7.
Materials (Basel) ; 15(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35057277

ABSTRACT

This study presents an adsorbent material (activated carbon) used in the treatment of wastewater with the role of removing ibuprofen, acetaminophen, diclofenac and ketoprofen pollutants. The wastewater treatment efficiencies of the activated carbon were systematically investigated using adsorption kinetics. The parameters studied were: pH (4 and 6 values of pH), initial concentration of wastewater (1, 5, and 10 mg/L), contact time (10 min), adsorbent quantity (0.1, 0.5, and 1 g), and isotherm models (Langmuir and Freundlich). The highest wastewater treatment efficiency was obtained at the 6 pH value. The determination of four anti-inflammatory drugs, frequently monitored in wastewater, was performed by a simple and fast method using the HPLC-technique-type DAD (diode array detector). The method was linear when the concentration ranged between 0.5 and 20 m/L for all compounds. The equilibrium concentration was obtained after 8 min. The octanol/water coefficient influenced the removal efficiency of the four drugs by the adsorbent material (activated carbon). The dose of activated carbon (0.1 to 1 g) significantly influenced the efficiency of wastewater treatment, which increased considerably when the dose of the adsorbent material increased. Using 1 g of the adsorbent material for the treatment of wastewater containing 1 mg/L initial concentration of pollutant compounds, the efficiencies were 98% for acetaminophen, 92% for diclofenac, 88% for ketoprofen and 96% for ibuprofen.

SELECTION OF CITATIONS
SEARCH DETAIL
...