Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 11: 1296600, 2023.
Article in English | MEDLINE | ID: mdl-38155839

ABSTRACT

There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by Xist long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form Xist-seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within Xist-seeded assemblies.

2.
BMC Biol ; 21(1): 175, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37580709

ABSTRACT

BACKGROUND: Cip1-interacting zinc finger protein 1 (CIZ1) forms RNA-dependent protein assemblies that stabilise epigenetic state, notable at the inactive X chromosome in females. CIZ1 has been linked with a range of human cancers and in mice genetic deletion of CIZ1 manifests as hyperproliferative lymphoid lineages in females. This suggests that its role in maintenance of epigenetic stability is linked with disease. RESULTS: Here, we show that male and female CIZ1-null primary murine fibroblasts have reduced H4K20me1 and that this compromises nuclear condensation on entry to quiescence. Global transcriptional repression remains intact in condensation-deficient CIZ1-null cells; however, a subset of genes linked with chromatin condensation and homology-directed DNA repair are perturbed. Failure to condense is phenotypically mimicked by manipulation of the H4K20me1 methyltransferase, SET8, in WT cells and partially reverted in CIZ1-null cells upon re-expression of CIZ1. Crucially, during exit from quiescence, nuclear decondensation remains active, so that repeated entry and exit cycles give rise to expanded nuclei susceptible to mechanical stress, DNA damage checkpoint activation, and downstream emergence of transformed proliferative colonies. CONCLUSIONS: Our results demonstrate a role for CIZ1 in chromatin condensation on entry to quiescence and explore the consequences of this defect in CIZ1-null cells. Together, the data show that CIZ1's protection of the epigenome guards against genome instability during quiescence cycles. This identifies loss of CIZ1 as a potentially devastating vulnerability in cells that undergo cycles of quiescence entry and exit.


Subject(s)
Cell Nucleus , Nuclear Proteins , Animals , Female , Humans , Male , Mice , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Epigenesis, Genetic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
3.
Results Probl Cell Differ ; 70: 279-294, 2022.
Article in English | MEDLINE | ID: mdl-36348111

ABSTRACT

Quiescence is a vital cellular state where cells can reversibly exit the cell cycle and cease proliferation in unfavourable conditions. Cells can undergo multiple transitions in and out of quiescence during their lifetime, and an imbalance in this highly regulated process can promote tumorigenesis and disease. The nucleus experiences vast changes during entry to quiescence, including changes in gene expression and a reduction in size due to increased chromatin compaction. Studies into these changes have highlighted the importance of a core quiescence gene expression programme, reorganisation of nuclear structures, and the action of the condensin complex in creating a stable, quiescent nucleus. However, the underpinning mechanisms behind the formation of a quiescent nucleus are still not fully understood. This chapter explores the current literature surrounding chromatin dynamics during entry to quiescence and the association between quiescence and disease and accentuates the need for further studies to understand this transition. Linking failure to maintain a stable, quiescent state with potential genome instability may help in the advancement of medical interventions for a range of diseases, including cancer.


Subject(s)
Chromatin , Neoplasms , Cell Division , Cell Cycle/genetics
4.
J Cell Biol ; 221(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35289833

ABSTRACT

CIZ1 forms large assemblies at the inactive X chromosome (Xi) in female fibroblasts in an Xist lncRNA-dependent manner and is required for accurate maintenance of polycomb targets genome-wide. Here we address requirements for assembly formation and show that CIZ1 undergoes two direct interactions with Xist, via independent N- and C-terminal domains. Interaction with Xist, assembly at Xi, and complexity of self-assemblies formed in vitro are modulated by two alternatively spliced glutamine-rich prion-like domains (PLD1 and 2). PLD2 is dispensable for accumulation at existing CIZ1-Xi assemblies in wild-type cells but is required in CIZ1-null cells where targeting, assembly, and enrichment for H3K27me3 and H2AK119ub occur de novo. In contrast, PLD1 is required for both de novo assembly and accumulation at preexisting assemblies and, in vitro, drives formation of a stable fibrillar network. Together they impart affinity for RNA and a complex relationship with repeat E of Xist. These data show that alternative splicing of two PLDs modulates CIZ1's ability to build large RNA-protein assemblies.


Subject(s)
Nuclear Proteins , Prions , RNA, Long Noncoding , X Chromosome Inactivation , Alternative Splicing , Animals , Female , Fibroblasts , Histones , Mice , Nuclear Proteins/genetics , RNA, Long Noncoding/genetics , X Chromosome/genetics , X Chromosome Inactivation/genetics
5.
Sci Rep ; 10(1): 18103, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093612

ABSTRACT

CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.


Subject(s)
Cell Cycle , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , DEAD-box RNA Helicases/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps , DEAD-box RNA Helicases/genetics , HeLa Cells , Humans , Neoplasm Proteins/genetics , Nuclear Proteins/genetics
6.
Nat Commun ; 10(1): 460, 2019 01 28.
Article in English | MEDLINE | ID: mdl-30692537

ABSTRACT

The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic , Fibroblasts/metabolism , Nuclear Proteins/genetics , Animals , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Fibroblasts/cytology , Gene Expression Profiling , Histones/metabolism , Methylation , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Nuclear Proteins/metabolism , S Phase/genetics , Time Factors
7.
Cell Cycle ; 17(18): 2268-2283, 2018.
Article in English | MEDLINE | ID: mdl-30280956

ABSTRACT

CIZ1 promotes cyclin-dependent DNA replication and resides in sub-nuclear foci that are part of the protein nuclear matrix (NM), and in RNA assemblies that are enriched at the inactive X chromosome (Xi) in female cells. It is subjected to alternative splicing, with specific variants implicated in adult and pediatric cancers. CIZ1-F is characterized by a frame shift that results from splicing exons 8-12 leading to inclusion of a short alternative reading frame (ARF), excluding the previously characterized C-terminal NM anchor domain. Here, we apply a set of novel variant-selective molecular tools targeted to the ARF to profile the expression of CIZ1-F at both transcript and protein levels, with focus on its relationship with the RNA-dependent and -independent fractions of the NM. Unlike full-length CIZ1, CIZ1-F does not accumulate at Xi, though like full-length CIZ1 it does resist extraction with DNase. Notably, CIZ1-F is sensitive to RNase identifying it as part of the RNA-fraction of the NM. In quiescent cells CIZ1-F transcript expression is suppressed and CIZ1-F protein is excluded from the nucleus, with re-expression not observed until the second cell cycle after exit from quiescence. Importantly, CIZ1-F is over-expressed in common solid tumors including colon and breast, pronounced in early stage but not highly-proliferative late stage tumors. Moreover, expression was significantly higher in hormone receptor negative breast tumors than receptor positive tumors. Together these data show that CIZ1-F is expressed in proliferating cells in an unusual cell cycle-dependent manner, and suggest that it may have potential as a tumor biomarker.


Subject(s)
Nuclear Proteins/metabolism , Alternative Splicing , Amino Acid Sequence , Biomarkers, Tumor/metabolism , Cell Nucleus/metabolism , DNA Replication , Exons , Female , G1 Phase , Humans , MCF-7 Cells , Neoplasm Staging , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Matrix/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism
8.
Methods Mol Biol ; 1861: 103-112, 2018.
Article in English | MEDLINE | ID: mdl-30218363

ABSTRACT

Immunodetection of nuclear antigens is often complicated by epitope masking, so that proteins known to function in the nucleus are sometimes not easily detected at their sites of action. Moreover, protein populations that are detected before unmasking can be very different to those seen after removal of nucleic acids. This is particularly true for components of the nuclear matrix, including those known to function at the inactive X chromosome. Here we describe an unmasking protocol that reveals previously undetected proteins at the inactive X chromosome in mouse fibroblasts.


Subject(s)
Fluorescent Antibody Technique/methods , Nuclear Matrix/metabolism , Nuclear Proteins/analysis , X Chromosome Inactivation , Animals , Epigenomics/methods , Epitopes/analysis , Female , Fibroblasts/metabolism , Mice
9.
Sci Rep ; 7(1): 6475, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743923

ABSTRACT

In higher eukaryotic nuclei, DNA is periodically anchored to an extraction-resistant protein structure, via matrix attachment regions. We describe a refined and accessible method to non-subjectively, rapidly and reproducibly measure both size and stability of the intervening chromatin loops, and use it to demonstrate that malignant transformation compromises the DNA-nuclear matrix interface.


Subject(s)
DNA/chemistry , High-Throughput Screening Assays/methods , Nuclear Matrix/chemistry , Antigens, Polyomavirus Transforming/chemistry , Cell Line , Cell Line, Tumor , Chromatin/chemistry , DNA/metabolism , DNA, Superhelical/chemistry , DNA, Superhelical/metabolism , Humans , Image Processing, Computer-Assisted , Nuclear Matrix/genetics , Nuclear Matrix/metabolism , Oncogenes
10.
Genes Dev ; 31(9): 876-888, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28546514

ABSTRACT

The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.


Subject(s)
Gene Expression Regulation , Lymphoproliferative Disorders/pathology , Nuclear Proteins/physiology , RNA, Long Noncoding/metabolism , X Chromosome Inactivation , X Chromosome/metabolism , Animals , Cell Differentiation , Cells, Cultured , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , RNA, Long Noncoding/genetics , Sex Characteristics , X Chromosome/genetics
11.
Biol Open ; 6(1): 92-99, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27934662

ABSTRACT

Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix--associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair.

12.
Clin Biochem ; 50(6): 336-343, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27867087

ABSTRACT

OBJECTIVES: Non-invasive tests for early detection of lung cancer are an important unmet clinical need. CIZ1b plasma biomarker can discriminate stage 1 lung cancer from within high-risk groups with clinically useful accuracy, with ROC AUCs in excess of 0.9 for two independent retrospective cohorts, and could therefore meet this need. Our aim was to characterise the native state of the biomarker and develop a quantitative immunoassay. DESIGN AND METHODS: Selective denaturation, preparative electrophoresis and mass spectrometry of human plasma were used to characterise the biomarker and interaction partners. A sandwich ELISA was generated, and specificity for CIZ1b biomarker tested on lung cancer patient plasma. RESULTS: CIZ1b biomarker is a denaturation-resistant complex between a C-terminal fragment of CIZ1 bearing the CIZ1b epitope specified by alternative splicing of exon14, and fibrinogen alpha chain. Reconstitution of the biomarker epitope with purified fibrinogen and CIZ1b, but not CIZ1a (non-alternatively spliced exon 14) confirmed the specificity of the results. The endogenous complex is highly stable in lung cancer plasma and can be quantified by pairing of a CIZ1b exon-junction specific antibody with detection of fibrinogen. Application of this sandwich ELISA to a prospectively collected development set of plasmas reveals the same level of accuracy as the western blot used to validate the discriminatory capability of the biomarker. CONCLUSIONS: Unexpected and unusual molecular structure of CIZ1b in native plasma has complicated immunoassay design, and delayed translation of this promising biomarker. However, CIZ1b can now be measured using a high-throughput, hospital-friendly sandwich ELISA format, overcoming an important barrier to further clinical development and application of this blood test for early stage lung cancer.


Subject(s)
Alternative Splicing/genetics , Biomarkers, Tumor/blood , Immunoassay/methods , Lung Neoplasms/blood , Nuclear Proteins/blood , Area Under Curve , Biomarkers, Tumor/genetics , Blotting, Western , Case-Control Studies , Chromatography, Liquid/methods , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Prospective Studies , Retrospective Studies , Tandem Mass Spectrometry/methods
13.
Cold Spring Harb Protoc ; 2016(1): pdb.prot083758, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729903

ABSTRACT

Immobilized proteins within the nucleus are usually identified by treating cells with detergent. The detergent-resistant fraction is often assumed to be chromatin and is described as such in many studies. However, this fraction consists of both chromatin-bound and nuclear-matrix-bound proteins. To investigate nuclear-matrix-bound proteins alone, further separation of these fractions is required; the DNA must be removed so that the remaining proteins can be compared with those from untreated cells. This protocol uses a nonionic detergent (Triton X-100) to remove membranes and soluble proteins from cells under physiologically relevant salt concentrations, followed by extraction with 0.5 m NaCl, digestion with DNase I, and removal of fragmented DNA. It uses a specialized buffer (cytoskeletal buffer) to stabilize the cytoskeleton and nuclear matrix in relatively gentle conditions. Nuclear matrix proteins can then be assessed by either immunofluorescence (IF) and immunoblotting (IB). IB has the advantage of resolving different forms of a protein of interest, and the soluble fractions can be analyzed. The major advantage of IF analysis is that individual cells (rather than homogenized populations) can be monitored, and the spatial arrangement of proteins bound to residual nuclear structures can be revealed.


Subject(s)
Cell Nucleus/metabolism , Microscopy , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix/metabolism , Animals , Cells, Cultured , Cytoskeleton/metabolism , Humans
14.
Cold Spring Harb Protoc ; 2016(1): pdb.top074518, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26729911

ABSTRACT

The first descriptions of an insoluble nuclear structure appeared more than 70 years ago, but it is only in recent years that a sophisticated picture of its significance has begun to emerge. Here we introduce multiple methods for the study of the nuclear matrix.


Subject(s)
Cell Fractionation , Cell Nucleus/metabolism , Nuclear Matrix/metabolism , Animals , Cell Nucleus/chemistry , Chemical Fractionation , Humans , Microscopy, Electron , Nuclear Matrix/ultrastructure , Proteomics
15.
J Cell Sci ; 128(8): 1518-27, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25736292

ABSTRACT

CIZ1 is a nuclear matrix protein that cooperates with cyclin A2 (encoded by CCNA2) and CDK2 to promote mammalian DNA replication. We show here that cyclin-A-CDK2 also negatively regulates CIZ1 activity by phosphorylation at threonines 144, 192 and 293. Phosphomimetic mutants do not promote DNA replication in cell-free and cell-based assays, and also have a dominant-negative effect on replisome formation at the level of PCNA recruitment. Phosphorylation blocks direct interaction with cyclin-A-CDK2 and recruitment of endogenous cyclin A to the nuclear matrix. In contrast, phosphomimetic CIZ1 retains the ability to bind to the nuclear matrix, and its interaction with CDC6 is not affected. Phospho-T192-specific antibodies confirm that CIZ1 is phosphorylated during S phase and G2, and show that phosphorylation at this site occurs at post-initiation concentrations of cyclin-A-CDK2. Taken together, the data suggest that CIZ1 is a kinase sensor that promotes initiation of DNA replication at low kinase levels, when in a hypophosphorylated state that is permissive for cyclin-A-CDK2 interaction and delivery to licensed origins, but blocks delivery at higher kinase levels when it is phosphorylated.


Subject(s)
Cyclin A2/metabolism , Cyclin-Dependent Kinase 2/metabolism , DNA Replication , Nuclear Proteins/metabolism , 3T3 Cells , Animals , Cells, Cultured , Chromatin/genetics , G2 Phase , HeLa Cells , Humans , Mice , Phosphorylation , Proliferating Cell Nuclear Antigen/metabolism , S Phase
16.
J Biol Chem ; 290(12): 7973-9, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25648893

ABSTRACT

ATP-dependent DNA unwinding activity has been demonstrated for recombinant archaeal homohexameric minichromosome maintenance (MCM) complexes and their yeast heterohexameric counterparts, but in higher eukaryotes such as Drosophila, MCM-associated DNA helicase activity has been observed only in the context of a co-purified Cdc45-MCM-GINS complex. Here, we describe the production of the recombinant human MCM (hMCM) complex in Escherichia coli. This protein displays ATP hydrolysis activity and is capable of unwinding duplex DNA. Using single-particle asymmetric EM reconstruction, we demonstrate that recombinant hMCM forms a hexamer that undergoes a conformational change when bound to DNA. Recombinant hMCM produced without post-translational modifications is functional in vitro and provides an important tool for biochemical reconstitution of the human replicative helicase.


Subject(s)
Chromosomes, Human , DNA/chemistry , Minichromosome Maintenance Proteins/chemistry , Base Sequence , Humans , Molecular Sequence Data , Protein Conformation
17.
Cell Cycle ; 14(3): 333-41, 2015.
Article in English | MEDLINE | ID: mdl-25659032

ABSTRACT

The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase in eukaryotes, and essential for DNA replication. By applying serial extractions to mammalian cells synchronized by release from quiescence, we reveal dynamic changes to the sub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase, identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix. The data distinguish 3 states that correspond to loose association with chromatin prior to DNA replication, transient highly stable binding to the nuclear-matrix coincident with initiation, and a post-initiation phase when MCM2 remains tightly associated with chromatin but not the nuclear-matrix. The data suggests that functional MCM complex loading takes place at the nuclear-matrix.


Subject(s)
DNA Replication , Minichromosome Maintenance Proteins/metabolism , Nuclear Matrix/metabolism , 3T3 Cells , Animals , Chromatin/metabolism , DNA Replication/drug effects , Deoxyribonuclease I/metabolism , G1 Phase/drug effects , Mice , Nuclear Matrix/drug effects , Protein Binding/drug effects , S Phase/drug effects , Succinimides/pharmacology
18.
Genes Cells ; 18(1): 17-31, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23134523

ABSTRACT

There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.


Subject(s)
DNA Replication , DNA/metabolism , Nuclear Matrix/metabolism , Animals , Chromatin/chemistry , Chromatin/metabolism , Humans
19.
Proc Natl Acad Sci U S A ; 109(45): E3128-35, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23074256

ABSTRACT

There is an unmet need for circulating biomarkers that can detect early-stage lung cancer. Here we show that a variant form of the nuclear matrix-associated DNA replication factor Ciz1 is present in 34/35 lung tumors but not in adjacent tissue, giving rise to stable protein quantifiable by Western blot in less than a microliter of plasma from lung cancer patients. In two independent sets, with 170 and 160 samples, respectively, variant Ciz1 correctly identified patients who had stage 1 lung cancer with clinically useful accuracy. For set 1, mean variant Ciz1 level in individuals without diagnosed tumors established a threshold that correctly classified 98% of small cell lung cancers (SCLC) and non-SCLC patients [receiver operator characteristic area under the curve (AUC) 0.958]. Within set 2, comparison of patients with stage 1 non-SCLC with asymptomatic age-matched smokers or individuals with benign lung nodules correctly classified 95% of patients (AUCs 0.913 and 0.905), with overall specificity of 76% and 71%, respectively. Moreover, using the mean of controls in set 1, we achieved 95% sensitivity among patients with stage 1 non-SCLC patients in set 2 with 74% specificity, demonstrating the robustness of the classification. RNAi-mediated selective depletion of variant Ciz1 is sufficient to restrain the growth of tumor cells that express it, identifying variant Ciz1 as a functionally relevant driver of cell proliferation in vitro and in vivo. The data show that variant Ciz1 is a strong candidate for a cancer-specific single marker capable of identifying early-stage lung cancer within at-risk groups without resort to invasive procedures.


Subject(s)
Alternative Splicing/genetics , Biomarkers, Tumor/blood , Lung Neoplasms/blood , Lung Neoplasms/pathology , Nuclear Proteins/blood , Nuclear Proteins/genetics , Adult , Aged , Animals , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Male , Mice , Middle Aged , NIH 3T3 Cells , Neoplasm Staging , Sensitivity and Specificity
20.
J Cell Sci ; 125(Pt 10): 2466-77, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22366453

ABSTRACT

CIZ1 is a nuclear-matrix-associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro, the CIZ1 N-terminus interacts with cyclin E and cyclin A at distinct sites, enabling functional cooperation with cyclin-A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix, imposing spatial constraint on cyclin-dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as a predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably downregulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes before meiotic division. Sequence analysis identifies at least seven alternatively spliced variants, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells, CIZ1 interacts with germ-cell-specific cyclin A1, which has been implicated in the repair of DNA double-strand breaks. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply post-replicative roles for CIZ1 in germ cell differentiation that might include meiotic recombination - a process intrinsic to genome stability and diversification.


Subject(s)
Cyclin A1/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Nuclear Proteins/metabolism , Spermatogenesis , Spermatogonia/cytology , Alternative Splicing , Animals , Cell Proliferation , Cyclin A1/genetics , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Neoplasms/physiopathology , Nuclear Proteins/genetics , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Spermatogonia/growth & development , Spermatogonia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...