Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1565, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944647

ABSTRACT

Neurobiological systems continually interact with the surrounding environment to refine their behaviour toward the best possible reward. Achieving such learning by experience is one of the main challenges of artificial intelligence, but currently it is hindered by the lack of hardware capable of plastic adaptation. Here, we propose a bio-inspired recurrent neural network, mastered by a digital system on chip with resistive-switching synaptic arrays of memory devices, which exploits homeostatic Hebbian learning for improved efficiency. All the results are discussed experimentally and theoretically, proposing a conceptual framework for benchmarking the main outcomes in terms of accuracy and resilience. To test the proposed architecture for reinforcement learning tasks, we study the autonomous exploration of continually evolving environments and verify the results for the Mars rover navigation. We also show that, compared to conventional deep learning techniques, our in-memory hardware has the potential to achieve a significant boost in speed and power-saving.

2.
Nanotechnology ; 30(1): 015102, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30378572

ABSTRACT

Spiking neural networks (SNNs) employing memristive synapses are capable of life-long online learning. Because of their ability to process and classify large amounts of data in real-time using compact and low-power electronic systems, they promise a substantial technology breakthrough. However, the critical issue that memristor-based SNNs have to face is the fundamental limitation in their memory capacity due to finite resolution of the synaptic elements, which leads to the replacement of old memories with new ones and to a finite memory lifetime. In this study we demonstrate that the nonlinear conductance dynamics of memristive devices can be exploited to improve the memory lifetime of a network. The network is simulated on the basis of a spiking neuron model of mixed-signal digital-analogue sub-threshold neuromorphic CMOS circuits, and on memristive synapse models derived from the experimental nonlinear conductance dynamics of resistive memory devices when stimulated by trains of identical pulses. The network learning circuits implement a spike-based plasticity rule compatible with both spike-timing and rate-based learning rules. In order to get an insight on the memory lifetime of the network, we analyse the learning dynamics in the context of a classical benchmark of neural network learning, that is hand-written digit classification. In the proposed architecture, the memory lifetime and the performance of the network are improved for memristive synapses with nonlinear dynamics with respect to linear synapses with similar resolution. These results demonstrate the importance of following holistic approaches that combine the study of theoretical learning models with the development of neuromorphic CMOS SNNs with memristive devices used to implement life-long on-chip learning.

SELECTION OF CITATIONS
SEARCH DETAIL
...