Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 73: 128884, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35835377

ABSTRACT

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11ß-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrocortisone/metabolism
2.
Bioorg Med Chem Lett ; 21(6): 1827-31, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316220

ABSTRACT

This report describes the design and synthesis of a series of CCR2 antagonists incorporating novel non-aryl/heteroaryl RHS (right hand side) motifs. Previous SAR in the area has suggested an aryl/heteroaryl substituent as a necessary structural feature for binding to the CCR2 receptor. Herein we describe the SAR with regards to potency (binding to hCCR2), dofetilide activity and metabolic stability (in vitro HLM) for this series. The resulting outcome was the identification of compounds with excellent properties for the investigation of the role of CCR2 in disease.


Subject(s)
Drug Design , Receptors, CCR2/antagonists & inhibitors , Binding Sites , Models, Molecular , Structure-Activity Relationship
3.
J Immunol ; 184(9): 5298-307, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20363976

ABSTRACT

Inhibiting signal transduction induced by inflammatory cytokines offers a new approach for the treatment of autoimmune diseases such as rheumatoid arthritis. Kinase inhibitors have shown promising oral disease-modifying antirheumatic drug potential with efficacy similar to anti-TNF biologics. Direct and indirect inhibition of the JAKs, with small molecule inhibitors like CP-690,550 and INCB018424 or neutralizing Abs, such as the anti-IL6 receptor Ab tocilizumab, have demonstrated rapid and sustained improvement in clinical measures of disease, consistent with their respective preclinical experiments. Therefore, it is of interest to identify optimized JAK inhibitors with unique profiles to maximize therapeutic opportunities. INCB028050 is a selective orally bioavailable JAK1/JAK2 inhibitor with nanomolar potency against JAK1 (5.9 nM) and JAK2 (5.7 nM). INCB028050 inhibits intracellular signaling of multiple proinflammatory cytokines including IL-6 and IL-23 at concentrations <50 nM. Significant efficacy, as assessed by improvements in clinical, histologic and radiographic signs of disease, was achieved in the rat adjuvant arthritis model with doses of INCB028050 providing partial and/or periodic inhibition of JAK1/JAK2 and no inhibition of JAK3. Diminution of inflammatory Th1 and Th17 associated cytokine mRNA levels was observed in the draining lymph nodes of treated rats. INCB028050 was also effective in multiple murine models of arthritis, with no evidence of suppression of humoral immunity or adverse hematologic effects. These data suggest that fractional inhibition of JAK1 and JAK2 is sufficient for significant activity in autoimmune disease models. Clinical evaluation of INCB028050 in RA is ongoing.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/enzymology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Animals , Arthritis, Experimental/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/enzymology , Autoimmune Diseases/immunology , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/physiology , Janus Kinase 1/physiology , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Random Allocation , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , Signal Transduction/immunology
4.
Bioorg Med Chem Lett ; 19(17): 5037-42, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19635666

ABSTRACT

A novel series of carbamates was discovered as potent and selective HER-2 sheddase inhibitors. Significant enhancement in potency and selectivity was achieved through attenuating the P1 moiety, which was conventionally believed to be exposed to solvent.


Subject(s)
Carbamates/chemistry , Protein Kinase Inhibitors/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Carbamates/chemical synthesis , Carbamates/pharmacology , Collagenases/metabolism , Humans , Microsomes, Liver/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/metabolism , Structure-Activity Relationship
5.
Biochem Biophys Res Commun ; 387(2): 251-5, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19576173

ABSTRACT

The chemokine receptor 2 (CCR2) directs migration of monocytes and has been proposed to be a drug target for chronic inflammatory diseases. INCB3344 was first published as a small molecule nanomolar inhibitor of rodent CCR2. Here, we show that INCB3344 can also bind human CCR2 (hCCR2) with high affinity, having a dissociation constant (K(d)) of approximately 5nM. The binding of the compound to the receptor is rapid and reversible. INCB3344 potently inhibits hCCR2 binding of monocyte chemoattractant protein-1 (MCP-1) and MCP-1-induced signaling and function in hCCR2-expressing cells, including ERK phosphorylation and chemotaxis, and is competitive against MCP-1 in vitro. INCB3344 also blocks MCP-1 binding to monocytes in human whole blood, with potency consistent with in vitro studies. The whole blood binding assay described here can be used for monitoring pharmacodynamic activity of CCR2 antagonists in both preclinical models and in the clinic.


Subject(s)
Pyrrolidines/pharmacology , Receptors, CCR2/antagonists & inhibitors , Biological Assay , Cells, Cultured , Chemokine CCL2/metabolism , Chemotaxis , Extracellular Signal-Regulated MAP Kinases/metabolism , Flow Cytometry/methods , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Phosphorylation , Pyrrolidines/metabolism
6.
Bioorg Med Chem Lett ; 19(13): 3525-30, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19457660

ABSTRACT

A serendipitous discovery that the metalloprotease binding profile of a novel class of 2-carboxamide-3-hydroxamic acid piperidines could be significantly attenuated by the modification of the unexplored P1 substituent enabled the design and synthesis of a novel 2-carboxamide-1-hydroxamic acid cyclohexyl scaffold core that exhibited excellent HER-2 potency and unprecedented MMP-selectivity that we believe would not have been possible via conventional P1' perturbations.


Subject(s)
ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Antineoplastic Agents/chemical synthesis , Hydroxamic Acids/chemical synthesis , Membrane Proteins/metabolism , Receptor, ErbB-2/metabolism , ADAM10 Protein , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Design , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Matrix Metalloproteinase 2/metabolism , Protein Binding , Structure-Activity Relationship , Substrate Specificity
7.
Bioorg Med Chem Lett ; 18(5): 1577-82, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18242982

ABSTRACT

Novel ((2-substituted-1H-benzo[d]imidazol-1-yl)methyl)benzamides were found to be excellent P1' substituents in conjunction with unique constrained beta-amino hydroxamic acid scaffolds for the discovery of potent selective inhibitors of TNF-alpha Converting Enzyme (TACE). Optimized examples proved potent for TACE, exceptionally selective over a wide panel of MMP and ADAM proteases, potent in the suppression of LPS-induced TNF-alpha in human whole blood and orally bioavailable.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Benzamides/chemistry , Benzamides/pharmacology , ADAM17 Protein , Animals , Area Under Curve , Benzamides/blood , Benzamides/pharmacokinetics , Biological Availability , Dogs , Half-Life , Molecular Structure , Rats , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 18(4): 1288-92, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18234496

ABSTRACT

Two novel oxaspiro[4.4]nonane beta-benzamido hydroxamic scaffolds have been synthesized in enantio- and diasteriomerically pure form. These templates proved to be exceptional platforms that have led to the discovery of potent inhibitors of TACE that are active in a cellular assay measuring suppression of LPS-induced TNF-alpha. Furthermore, these inhibitors are selective against related MMPs, demonstrate permeability in a Caco-2 assay, and display good oral bioavailability.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Alkanes/chemistry , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Spiro Compounds/chemistry , ADAM17 Protein , Administration, Oral , Alkanes/chemical synthesis , Alkanes/pharmacokinetics , Alkanes/pharmacology , Animals , Biological Availability , Caco-2 Cells , Humans , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/metabolism , Models, Molecular , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Spiro Compounds/chemical synthesis , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
9.
Bioorg Med Chem Lett ; 18(6): 1958-62, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18282708

ABSTRACT

Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Benzofurans/chemistry , Imidazoles/chemistry , Indoles/chemistry , Protease Inhibitors/pharmacology , Pyrazoles/chemistry , Pyridines/chemistry , ADAM Proteins/metabolism , ADAM17 Protein , Administration, Oral , Animals , Biological Availability , Humans , Hydroxamic Acids/chemistry , Lipopolysaccharides/pharmacology , Matrix Metalloproteinase Inhibitors , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
10.
Bioorg Med Chem Lett ; 18(2): 694-9, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18061445

ABSTRACT

Selective inhibitors of TNF-alpha Converting Enzyme (TACE) based on (1R,2S)-cyclopentyl, (3S,4S)-pyrrolidinyl, and (3R,4S)-tetrahydrofuranyl beta-benzamido hydroxamic acids have been synthesized and evaluated. This study has led to the discovery of novel inhibitors whose profiles include activity against TACE in an enzyme assay, potency in the suppression of LPS-stimulated TNF-alpha in human whole blood, selectivity against a panel of MMPs and oral bioavailability.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , ADAM17 Protein , Administration, Oral , Animals , Biological Availability , Chromatography, High Pressure Liquid , Enzyme Inhibitors/chemical synthesis , Humans , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Rats , Stereoisomerism
12.
Bioorg Med Chem Lett ; 18(1): 159-63, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-18036818

ABSTRACT

In an effort to obtain a MMP selective and potent inhibitor of HER-2 sheddase (ADAM-10), the P1' group of a novel class of (6S,7S)-7-[(hydroxyamino)carbonyl]-6-carboxamide-5-azaspiro[2.5]octane-5-carboxylates was attenuated and the structure-activity relationships (SAR) will be discussed. In addition, it was discovered that unconventional perturbation of the P2' moiety could confer MMP selectivity, which was hypothesized to be a manifestation of the P2' group effecting global conformational changes.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Hydroxamic Acids/chemistry , Membrane Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Receptor, ErbB-2/antagonists & inhibitors , ADAM Proteins/metabolism , ADAM10 Protein , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/pharmacology , Drug Design , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Membrane Proteins/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Receptor, ErbB-2/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Substrate Specificity
13.
Drug Metab Dispos ; 35(10): 1916-25, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17656469

ABSTRACT

DPC 333 ((2R)-2-((3R)-3-amino-3{4-[2-methyl-4-quinolinyl) methoxy] phenyl}-2-oxopyrrolidinyl)-N-hydroxy-4-methylpentanamide)) is a potent and selective inhibitor of tumor necrosis factor (TNF)-alpha-converting enzyme (TACE). It significantly inhibits lipopolysaccharide-induced soluble TNF-alpha production in blood from rodents, chimpanzee, and human, with IC(50) values ranging from 17 to 100 nM. In rodent models of endotoxemia, DPC 333 inhibited the production of TNF-alpha in a dose-dependent manner, with an oral ED(50) ranging from 1.1 to 6.1 mg/kg. Oral dosing of DPC 333 at 5.5 mg/kg daily for 2 weeks in a rat collagen antibody-induced arthritis model suppressed the maximal response by approximately 50%. DPC 333 was distributed widely to tissues including the synovium, the site of action for antiarthritic drugs. Pharmacokinetic and pharmacodynamic studies in chimpanzee revealed a systemic clearance of 0.4 l/h/kg, a V(ss) of 0.6 l/kg, an oral bioavailability of 17%, and an ex vivo IC(50) for the suppression of TNF-alpha production of 55 nM (n = 1). In a phase I clinical trial with male volunteers after single escalating doses of oral DPC 333, the terminal half-life was between 3 and 6 h and the ex vivo IC(50) for suppressing TNF-alpha production was 113 nM. Measurement of the suppression of TNF-alpha production ex vivo may serve as a good biomarker in evaluating the therapeutic efficacy of TACE inhibitors. Overall, the pharmacological profiles of DPC 333 support the notion that suppression of TNF-alpha with TACE inhibitors like DPC 333 may provide a novel approach in the treatment of various inflammatory diseases including rheumatoid arthritis, via control of excessive TNF-alpha production.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Endotoxemia/drug therapy , Quinolines/pharmacokinetics , Quinolines/therapeutic use , ADAM17 Protein , Adult , Animals , Anti-Inflammatory Agents/blood , Arthritis, Experimental/blood , Arthritis, Experimental/pathology , Dogs , Double-Blind Method , Endotoxemia/blood , Endotoxemia/chemically induced , Female , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred BALB C , Pan troglodytes , Quinolines/blood , Rats , Rats, Inbred Strains , Synovial Fluid/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/blood
14.
Bioorg Med Chem Lett ; 17(7): 1865-70, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17276676

ABSTRACT

A new P1' group for TACE inhibitors was identified by eliminating the oxygen atom in the linker of the original 4-(2-methylquinolin-4-ylmethoxy)phenyl P1' group. Incorporation of this 4-(2-methylquinolin-4-ylmethyl)phenyl group onto different beta-aminohydroxamic acid cores provided compound 18, which demonstrated potent porcine TACE (p-TACE) and human whole blood activity, excellent PK properties, and good selectivity against a variety of MMPs.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Chemistry, Pharmaceutical/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Hydroxamic Acids/chemistry , ADAM Proteins/blood , ADAM17 Protein , Animals , Dogs , Drug Design , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Oxygen/chemistry , Rats , Structure-Activity Relationship , Swine
15.
J Med Chem ; 50(4): 603-6, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17256836

ABSTRACT

The design, synthesis, evaluation, and identification of a novel class of (6S,7S)-N-hydroxy-6-carboxamide-5-azaspiro[2.5]octane-7-carboxamides as the first potent and selective inhibitors of human epidermal growth factor receptor-2 (HER-2) sheddase is described. Several compounds were identified that possess excellent pharmacodynamic and pharmacokinetic properties and were shown to decrease tumor size, cleaved HER-2 extracellular domain plasma levels, and potentiate the effects of the humanized anti-HER-2 monoclonal antibody (trastuzumab) in vivo in a HER-2 overexpressing cancer murine xenograft model.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Hydroxamic Acids/chemical synthesis , Piperidines/chemical synthesis , Receptor, ErbB-2/antagonists & inhibitors , Spiro Compounds/chemical synthesis , Administration, Oral , Amides/pharmacokinetics , Amides/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/pharmacology , Mice , Molecular Conformation , Piperidines/chemistry , Piperidines/pharmacology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous , Trastuzumab
16.
Bioorg Med Chem Lett ; 17(1): 266-71, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17027261

ABSTRACT

Using a pyrimidine-2,4,6-trione motif as a zinc-binding group, a series of selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) was discovered. Optimization of initial lead 1 resulted in a potent inhibitor (51), with an IC(50) of 2 nM in a porcine TACE assay. To the best of our knowledge, compound 51 and related analogues represent first examples of non-hydroxamate-based inhibitors of TACE with single digit nanomolar potency.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Barbiturates/chemistry , Barbiturates/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , ADAM17 Protein , Barbiturates/chemical synthesis , Benzamides/chemical synthesis , Hydroxamic Acids/chemistry , Inhibitory Concentration 50 , Protease Inhibitors/chemical synthesis
17.
Bioorg Med Chem Lett ; 17(5): 1413-7, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17188863

ABSTRACT

A series of novel hydantoins was designed and synthesized as structural alternatives to hydroxamate inhibitors of TACE. 5-Mono- and di-substituted hydantoins exhibited activity with IC50 values of 11-60 nM against porcine TACE in vitro and excellent selectivity against other MMPs.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Hydantoins/chemical synthesis , Hydantoins/pharmacology , ADAM17 Protein , Animals , Drug Design , Inhibitory Concentration 50 , Structure-Activity Relationship , Substrate Specificity , Swine
18.
Bioorg Med Chem Lett ; 16(10): 2699-704, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16516466

ABSTRACT

A novel series of achiral TNF-alpha converting enzyme (TACE) inhibitors has been discovered. These compounds exhibited activities from 0.35 to 11nM in a porcine TACE assay and inhibited TNF-alpha production in an LPS-stimulated whole blood assay with an IC(50) value of 23nM for the most potent one. They also have excellent selectivities over related metalloproteases including aggrecanases.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , ADAM17 Protein , Animals , Cell Line , Cyclization , Humans , Mice , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 16(4): 1028-31, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16289878

ABSTRACT

Novel sultam hydroxamates with potent MMP activity were transformed into potent TACE inhibitors, lacking MMP activity. To accomplish this we relied on structural differences between the MMP and TACE S1' pockets and the known advantageous fit of a 2-methyl-4-quinolinylmethoxyphenyl group into this region. From this approach, compound 7d was identified as a potent TACE inhibitor (IC50 = 3.7 nM) that lacked MMP-1, -2, -9, and -13 activity.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Enzyme Inhibitors , Hydroxamic Acids , Metalloproteases/antagonists & inhibitors , Sulfonamides , ADAM17 Protein , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacology
20.
Bioorg Med Chem Lett ; 15(12): 2970-3, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15908214

ABSTRACT

New inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with a pyrimidine-2,4,6-trione in place of the commonly used hydroxamic acid. These non-hydroxamate TACE inhibitors were developed by incorporating a 4-(2-methyl-4-quinolinylmethoxy)phenyl group, an optimized TACE selective P1' group. Several leads were identified with IC50 values around 100 nM in a porcine TACE assay and selective over MMP-1, -2, -9, -13, and aggrecanase.


Subject(s)
Hydroxamic Acids/chemistry , Matrix Metalloproteinase Inhibitors , Metalloendopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , ADAM Proteins , ADAM17 Protein , Animals , Endopeptidases/chemistry , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...