Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 598943, 2021.
Article in English | MEDLINE | ID: mdl-34211455

ABSTRACT

Neutrophils play an important role in the outcome of leishmaniasis, contributing either to exacerbating or controlling the progression of infection, a dual effect whose underlying mechanisms are not clear. We recently reported that CD4+ and CD8+ T cells, and dendritic cells of Leishmania amazonensis-infected mice present high expression of PD-1 and PD-L1, respectively. Given that the PD-1/PD-L1 interaction may promote cellular dysfunction, and that neutrophils could interact with T cells during infection, we investigated here the levels of PD-L1 in neutrophils exposed to Leishmania parasites. We found that both, promastigotes and amastigotes of L. amazonensis induced the expression of PD-L1 in the human and murine neutrophils that internalized these parasites in vitro. PD-L1-expressing neutrophils were also observed in the ear lesions and the draining lymph nodes of L. amazonensis-infected mice, assessed through cell cytometry and intravital microscopy. Moreover, expression of PD-L1 progressively increased in neutrophils from ear lesions as the disease evolved to the chronic phase. Co-culture of infected neutrophils with in vitro activated CD8+ T cells inhibits IFN-γ production by a mechanism dependent on PD-1 and PD-L1. Importantly, we demonstrated that in vitro infection of human neutrophils by L braziliensis induced PD-L1+ expression and also PD-L1+ neutrophils were detected in the lesions of patients with cutaneous leishmaniasis. Taken together, these findings suggest that the Leishmania parasite increases the expression of PD-L1 in neutrophils with suppressor capacity, which could favor the parasite survival through impairing the immune response.


Subject(s)
B7-H1 Antigen/metabolism , Leishmania braziliensis/physiology , Leishmaniasis/immunology , Neutrophils/immunology , T-Lymphocytes/immunology , Animals , B7-H1 Antigen/genetics , Cells, Cultured , Disease Models, Animal , Female , Humans , Immunosuppression Therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/metabolism
2.
Aging Cell ; 19(12): e13272, 2020 12.
Article in English | MEDLINE | ID: mdl-33166035

ABSTRACT

The development of senescence in tissues of different organs and in the immune system are usually investigated independently of each other although during ageing, senescence in both cellular systems develop concurrently. Senescent T cells are highly inflammatory and secrete cytotoxic mediators and express natural killer cells receptors (NKR) that bypass their antigen specificity. Instead they recognize stress ligands that are induced by inflammation or infection of different cell types in tissues. In this article we discuss data on T cell senescence, how it is regulated and evidence for novel functional attributes of senescent T cells. We discuss an interactive loop between senescent T cells and senescent non-lymphoid cells and conclude that in situations of intense inflammation, senescent cells may damage healthy tissue. While the example for immunopathology induced by senescent cells that we highlight is cutaneous leishmaniasis, this situation of organ damage may apply to other infections, including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and senescent cells are all part of the same equation.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cellular Senescence/physiology , Killer Cells, Natural/immunology , Leishmaniasis, Cutaneous/immunology , Receptors, Natural Killer Cell/immunology , Aging/immunology , Arthritis, Rheumatoid/immunology , COVID-19/immunology , Humans , Leishmania braziliensis/immunology , SARS-CoV-2/immunology
3.
Nat Immunol ; 21(6): 684-694, 2020 06.
Article in English | MEDLINE | ID: mdl-32231301

ABSTRACT

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Senescence/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Nuclear Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cytotoxicity, Immunologic , Gene Expression Profiling , Humans , Membrane Proteins/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nuclear Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Yellow Fever/genetics , Yellow Fever/immunology , Yellow Fever/metabolism , Yellow Fever/virology , Yellow fever virus/immunology
4.
Front Immunol ; 9: 3001, 2018.
Article in English | MEDLINE | ID: mdl-30662437

ABSTRACT

Leishmania (Viannia) braziliensis induces American tegumentary leishmaniasis that ranges in severity from the milder form, cutaneous (CL) to severe disseminated cutaneous leishmaniasis. Patients with CL develop a cell-mediated Th1 immune response accompanied by production of inflammatory cytokines, which contribute to parasite control and pathogenesis of disease. Here, we describe the accumulation of circulating T cells with multiple features of telomere dependent-senescence including elevated expression of CD57, KLRG-1, and γH2AX that have short telomeres and low hTERT expression during cutaneous L. braziliensis infection. This expanded population of T cells was found within the CD45RA+CD27- (EMRA) subset and produced high levels of inflammatory cytokines, analogous to the senescence-associated secretory profile (SASP) that has been described in senescent non-lymphoid cells. There was a significant correlation between the accumulation of these cells and the extent of systemic inflammation, suggesting that they are involved in the inflammatory response in this disease. Furthermore, these cells expressed high level of the skin homing receptor CLA and there was a highly significant correlation between the number of these cells in the circulation and the size of the Leishmania-induced lesions in the skin. Collectively our results suggest that extensive activation during the early stages of leishmaniasis drives the senescence of T cells with the propensity to home to the skin. The senescence-related inflammatory cytokine secretion by these cells may control the infection but also contribute to the immunopathology in the disease.


Subject(s)
Cellular Senescence/immunology , Inflammation/immunology , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/immunology , T-Lymphocytes/immunology , Adult , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Inflammation/blood , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Male , Middle Aged , Receptors, Lymphocyte Homing/immunology , Receptors, Lymphocyte Homing/metabolism , Skin/immunology , Skin/parasitology , Skin/pathology , T-Lymphocytes/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...