Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Cardiovasc Magn Reson ; 23(1): 59, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34011372

ABSTRACT

BACKGROUND: Patients with repaired Tetralogy of Fallot (rTOF) often develop cardiovascular dysfunction and require regular imaging to evaluate deterioration and time interventions such as pulmonary valve replacement. Four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) enables detailed assessment of flow characteristics in all chambers and great vessels. We performed a systematic review of intra-cardiac 4D flow applications in rTOF patients, to examine clinical utility and highlight optimal methods for evaluating rTOF patients. METHODS: A comprehensive literature search was undertaken in March 2020 on Google Scholar and Scopus. A modified version of the Critical Appraisal Skills Programme (CASP) tool was used to assess and score the applicability of each study. Important clinical outcomes were assessed including similarities and differences. RESULTS: Of the 635 articles identified, 26 studies met eligibility for systematic review. None of these were below 59% applicability on the modified CASP score. Studies could be broadly classified into four groups: (i) pilot studies, (ii) development of new acquisition methods, (iii) validation and (vi) identification of novel flow features. Quantitative comparison with other modalities included 2D phase contrast CMR (13 studies) and echocardiography (4 studies). The 4D flow study applications included stroke volume (18/26;69%), regurgitant fraction (16/26;62%), relative branch pulmonary artery flow(4/26;15%), systolic peak velocity (9/26;35%), systemic/pulmonary total flow ratio (6/26;23%), end diastolic and end systolic volume (5/26;19%), kinetic energy (5/26;19%) and vorticity (2/26;8%). CONCLUSIONS: 4D flow CMR shows potential in rTOF assessment, particularly in retrospective valve tracking for flow evaluation, velocity profiling, intra-cardiac kinetic energy quantification, and vortex visualization. Protocols should be targeted to pathology. Prospective, randomized, multi-centered studies are required to validate these new characteristics and establish their clinical use.


Subject(s)
Tetralogy of Fallot , Heart Ventricles , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Prospective Studies , Retrospective Studies , Tetralogy of Fallot/diagnostic imaging , Tetralogy of Fallot/surgery
2.
IEEE J Biomed Health Inform ; 22(2): 503-515, 2018 03.
Article in English | MEDLINE | ID: mdl-28103561

ABSTRACT

Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes. Which method best characterizes left ventricular remodeling after MI is an open research question. A better descriptor of remodeling is expected to provide a more accurate evaluation of disease status in MI patients. We therefore designed a challenge to test shape characterization in MI given a set of three-dimensional left ventricular surface points. The training set comprised 100 MI patients, and 100 asymptomatic volunteers (AV). The challenge was initiated in 2015 at the Statistical Atlases and Computational Models of the Heart workshop, in conjunction with the MICCAI conference. The training set with labels was provided to participants, who were asked to submit the likelihood of MI from a different (validation) set of 200 cases (100 AV and 100 MI). Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were used as the outcome measures. The goals of this challenge were to (1) establish a common dataset for evaluating statistical shape modeling algorithms in MI, and (2) test whether statistical shape modeling provides additional information characterizing MI patients over standard clinical measures. Eleven groups with a wide variety of classification and feature extraction approaches participated in this challenge. All methods achieved excellent classification results with accuracy ranges from 0.83 to 0.98. The areas under the receiver operating characteristic curves were all above 0.90. Four methods showed significantly higher performance than standard clinical measures. The dataset and software for evaluation are available from the Cardiac Atlas Project website1.

3.
Int J Cardiovasc Imaging ; 34(4): 615-624, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29119275

ABSTRACT

Aortic regurgitation (AR) increases the hemodynamic load on both the left ventricle (LV) and the aorta. Vasodilators and beta-blockers both reduce systemic blood pressure, but their relative effects on the LV and aortic function and aortic regurgitant fraction in chronic AR are uncertain. We aimed to compare short-term effects of losartan and metoprolol on LV and aortic function in asymptomatic patients with chronic moderate to severe AR, both at rest and during exercise, using cardiac magnetic resonance (CMR) imaging. 17 chronic AR patients were randomized to 4-6 weeks losartan followed by metoprolol, or vice versa, in a cross-over design. Aortic regurgitant fraction, aortic distensibility, pulse wave velocity and LV function were assessed at rest and after moderate exercise stress (29 ± 7 W, heart rate increase 25 ± 6 bpm) using CMR. Chronic AR patients on metoprolol had a significantly lower mean heart rate, cardiac power index and rate-pressure product, than on losartan (all p < 0.01). However, aortic regurgitant fraction was greater on metoprolol compared to losartan (by 7 ± 11%, p = 0.02). Metoprolol was also associated with a greater reduction in aortic distensibility during exercise than losartan (- 2.4 ± 1.5 × 10-3 vs - 1.7 ± 2.1 × 10-3 mmHg-1 respectively, p = 0.04). End-diastolic volume index was higher on metoprolol than losartan at exercise (difference 6.6 ± 7.8 ml/m2, p < 0.01), as was end-systolic volume index (difference 4.0 ± 5.2 ml/m2, p < 0.01). Losartan and metoprolol have significantly different short-term effects on aortic regurgitation and LV and aortic function in chronic AR. Further research is required to determine the long-term clinical significance of these changes.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/therapeutic use , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Aorta/drug effects , Aortic Valve Insufficiency/drug therapy , Exercise , Hemodynamics/drug effects , Losartan/therapeutic use , Metoprolol/therapeutic use , Rest , Ventricular Function, Left/drug effects , Adrenergic beta-1 Receptor Antagonists/adverse effects , Adult , Aged , Angiotensin II Type 1 Receptor Blockers/adverse effects , Aorta/diagnostic imaging , Aorta/physiopathology , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/physiopathology , Cross-Over Studies , Exercise Test , Female , Humans , Losartan/adverse effects , Magnetic Resonance Imaging , Male , Metoprolol/adverse effects , Middle Aged , New Zealand , Prospective Studies , Pulse Wave Analysis , Time Factors , Treatment Outcome , Vascular Stiffness/drug effects
4.
J Magn Reson Imaging ; 47(3): 787-797, 2018 03.
Article in English | MEDLINE | ID: mdl-28722247

ABSTRACT

PURPOSE: To provide regional strain and ventricular volume from a single acquisition, using subtly tagged steady-state free precession (SubTag SSFP) feature tracking. MATERIALS AND METHODS: The effects on regional strain of tag strength in gradient recalled echo (GRE) tagging, flip angle in untagged balanced SSFP, and both in SubTag SSFP were examined in the mid left ventricle of 15 healthy volunteers at 3T. Optimal parameters were determined from varying both tag strength and SSFP flip angle using full tag saturation GRE as the reference standard. SubTag SSFP was acquired in 15 additional healthy volunteers for whole-heart volume and strain assessment using the optimized parameters. Values measured by two image analysts were compared to clinical reference standards from untagged SSFP (volumes) and GRE tagging (strains). RESULTS: Regional strain accuracy was maintained with decreasing total tagging flip angle (ß); less than 3% differences for ß ≥ 26°. For untagged SSFP flip angle (α), whole-wall strain differences became statistically significant when α < 40°. A SubTag SSFP acquisition with α = 40° and ß = 46° showed the best combination of tagging strength, blood-myocardial contrast, and tag persistence at end-systole for regional strain estimation. SubTag SSFP also showed excellent agreement with untagged SSFP for volumetrics (percent difference: end-diastolic volume = 0.6%, end-systolic volume = 0.4%, stroke volume = 1.2%, ejection fraction = 0.6%, mass = 1.1%). CONCLUSION: Feature tracking for regional myocardial strain assessment is dependent on image features, mainly the tag strength, persistence, and image contrast. SubTag SSFP balances these criteria to provide accurate regional strain and volumetric assessment in a single acquisition. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2018;47:787-797.


Subject(s)
Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Ventricular Function, Left/physiology , Adult , Female , Humans , Male , Reference Values , Reproducibility of Results , Stroke Volume/physiology
5.
IEEE J Biomed Health Inform ; 21(5): 1315-1326, 2017 09.
Article in English | MEDLINE | ID: mdl-28880152

ABSTRACT

Cardiac magnetic resonance perfusion examinations enable noninvasive quantification of myocardial blood flow. However, motion between frames due to breathing must be corrected for quantitative analysis. Although several methods have been proposed, there is a lack of widely available benchmarks to compare different algorithms. We sought to compare many algorithms from several groups in an open benchmark challenge. Nine clinical studies from two different centers comprising normal and diseased myocardium at both rest and stress were made available for this study. The primary validation measure was regional myocardial blood flow based on the transfer coefficient (Ktrans), which was computed using a compartment model and the myocardial perfusion reserve (MPR) index. The ground truth was calculated using contours drawn manually on all frames by a single observer, and visually inspected by a second observer. Six groups participated and 19 different motion correction algorithms were compared. Each method used one of three different motion models: rigid, global affine, or local deformation. The similarity metric also varied with methods employing either sum-of-squared differences, mutual information, or cross correlation. There were no significant differences in Ktrans or MPR compared across different motion models or similarity metrics. Compared with the ground truth, only Ktrans for the sum-of-squared differences metric, and for local deformation motion models, had significant bias. In conclusion, the open benchmark enabled evaluation of clinical perfusion indices over a wide range of methods. In particular, there was no benefit of nonrigid registration techniques over the other methods evaluated in this study. The benchmark data and results are available from the Cardiac Atlas Project ( www.cardiacatlas.org).


Subject(s)
Cardiac Imaging Techniques , Heart/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Angiography , Movement/physiology , Algorithms , Benchmarking , Cardiac Imaging Techniques/methods , Cardiac Imaging Techniques/standards , Humans , Image Processing, Computer-Assisted/methods , Image Processing, Computer-Assisted/standards , Magnetic Resonance Angiography/methods , Magnetic Resonance Angiography/standards
6.
Arq Bras Cardiol ; 108(6): 552-563, 2017.
Article in English, Portuguese | MEDLINE | ID: mdl-28562831

ABSTRACT

BACKGROUND:: Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. OBJECTIVE:: To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. METHODS:: The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. RESULTS:: The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p < 0.0001). The early diastolic relaxation velocity by tissue Doppler and longitudinal relaxation rate for the lateral mitral annulus displacement were positively associated (p = 0.007), as were the ratio between Doppler E/e' and CMR E/E' (p = 0.01). CMR-determined normalized peak E (NE) and deceleration time (DT) were able to predict diastolic dysfunction (areas under the curve [AUCs] = 0.70 and 0.72, respectively). In addition, the lateral E/E' ratio showed good utility in identifying diastolic dysfunction (AUC = 0.80). Overall, echocardiography and CMR interobserver and intraobserver agreements were excellent (intraclass correlation coefficient range 0.72 - 0.97). CONCLUSION:: 3D modeling of standard cine CMR images was able to identify study subjects with reduced diastolic function and showed good reproducibility, suggesting a potential for a routine diastolic function assessment by CMR. FUNDAMENTO:: A ressonância magnética cardíaca necessita de um método simples e robusto para a avaliação da função diastólica que pode ser feito com sequências protocolares de rotina. OBJETIVO:: Desenvolver e validar a avaliação volumétrica da função diastólica através de um modelo tridimensional (3D) com utilização de imagens de ressonância magnética cardíaca (RMC) e comparar os resultados obtidos com este modelo com os obtidos por ecocardiografia. MÉTODOS:: Os participantes do estudo assinaram um termo de consentimento e foram incluídos se tivessem sido submetidos no mesmo dia tanto à ecocardiografia quanto à cine RMC com precessão livre no estado estacionário (steady-state free precession, SSFP). Pontos-guia foram utilizados no anel mitral septal e lateral para definir a velocidade de estiramento no início da diástole (E'), enquanto curvas de volume-tempo do modelo 3D foram utilizadas para avaliar os parâmetros de enchimento diastólico. Foram determinadas a correlação entre a RMC 3D e a ecocardiografia, além da acurácia da RMC em classificar o grau de função diastólica. RESULTADOS:: Ao todo, 102 sujeitos foram incluídos no estudo. A razão E/A pela RMC esteve positivamente associada com a razão E/A obtida pela ecocardiografia (r = 0,71, p < 0,0001). Estiveram positivamente associadas a velocidade de relaxamento diastólico inicial ao Doppler tecidual e a velocidade de relaxamento longitudinal de deslocamento do anel mitral lateral (p = 0,007), bem como a razão entre E/e' por Doppler e E/E' pela RMC (p = 0,01). A velocidade normalizada de pico de enchimento (EM) determinada pela RMC e o tempo de desaceleração (TD) foram capazes de predizer a disfunção diastólica (áreas sob a curva [AUCs] = 0,70 e 0,72, respectivamente). Além disso, a razão E/E' lateral mostrou boa utilidade para a identificação da disfunção diastólica (AUC = 0,80). No geral, a ecocardiografia e a RMC apresentaram excelente concordância interobservador e intraobservador (coeficiente de correlação intraclasse 0,72 - 0,97). CONCLUSÃO:: Uma modelagem 3D de imagens padrões de cine RMC foi capaz de identificar os indivíduos do estudo com função diastólica reduzida e mostrou uma boa reprodutibilidade, sugerindo ter potencial na avaliação rotineira da função diastólica por RMC.


Subject(s)
Atherosclerosis/diagnostic imaging , Stroke Volume/physiology , Aged , Aged, 80 and over , Atherosclerosis/physiopathology , Diastole/physiology , Echocardiography , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Middle Aged , Observer Variation , Reproducibility of Results
7.
Arq. bras. cardiol ; 108(6): 552-563, June 2017. tab, graf
Article in English | LILACS | ID: biblio-887879

ABSTRACT

Abstract Background: Cardiac Magnetic Resonance is in need of a simple and robust method for diastolic function assessment that can be done with routine protocol sequences. Objective: To develop and validate a three-dimensional (3D) model-based volumetric assessment of diastolic function using cardiac magnetic resonance (CMR) imaging and compare the results obtained with the model with those obtained by echocardiography. Methods: The study participants provided written informed consent and were included if having undergone both echocardiography and cine steady-state free precession (SSFP) CMR on the same day. Guide points at the septal and lateral mitral annulus were used to define the early longitudinal relaxation rate (E'), while a time-volume curve from the 3D model was used to assess diastolic filling parameters. We determined the correlation between 3D CMR and echocardiography and the accuracy of CMR in classifying the diastolic function grade. Results: The study included 102 subjects. The E/A ratio by CMR was positively associated with the E/A ratio by echocardiography (r = 0.71, p < 0.0001). The early diastolic relaxation velocity by tissue Doppler and longitudinal relaxation rate for the lateral mitral annulus displacement were positively associated (p = 0.007), as were the ratio between Doppler E/e' and CMR E/E' (p = 0.01). CMR-determined normalized peak E (NE) and deceleration time (DT) were able to predict diastolic dysfunction (areas under the curve [AUCs] = 0.70 and 0.72, respectively). In addition, the lateral E/E' ratio showed good utility in identifying diastolic dysfunction (AUC = 0.80). Overall, echocardiography and CMR interobserver and intraobserver agreements were excellent (intraclass correlation coefficient range 0.72 - 0.97). Conclusion: 3D modeling of standard cine CMR images was able to identify study subjects with reduced diastolic function and showed good reproducibility, suggesting a potential for a routine diastolic function assessment by CMR.


Resumo Fundamento: A ressonância magnética cardíaca necessita de um método simples e robusto para a avaliação da função diastólica que pode ser feito com sequências protocolares de rotina. Objetivo: Desenvolver e validar a avaliação volumétrica da função diastólica através de um modelo tridimensional (3D) com utilização de imagens de ressonância magnética cardíaca (RMC) e comparar os resultados obtidos com este modelo com os obtidos por ecocardiografia. Métodos: Os participantes do estudo assinaram um termo de consentimento e foram incluídos se tivessem sido submetidos no mesmo dia tanto à ecocardiografia quanto à cine RMC com precessão livre no estado estacionário (steady-state free precession, SSFP). Pontos-guia foram utilizados no anel mitral septal e lateral para definir a velocidade de estiramento no início da diástole (E'), enquanto curvas de volume-tempo do modelo 3D foram utilizadas para avaliar os parâmetros de enchimento diastólico. Foram determinadas a correlação entre a RMC 3D e a ecocardiografia, além da acurácia da RMC em classificar o grau de função diastólica. Resultados: Ao todo, 102 sujeitos foram incluídos no estudo. A razão E/A pela RMC esteve positivamente associada com a razão E/A obtida pela ecocardiografia (r = 0,71, p < 0,0001). Estiveram positivamente associadas a velocidade de relaxamento diastólico inicial ao Doppler tecidual e a velocidade de relaxamento longitudinal de deslocamento do anel mitral lateral (p = 0,007), bem como a razão entre E/e' por Doppler e E/E' pela RMC (p = 0,01). A velocidade normalizada de pico de enchimento (EM) determinada pela RMC e o tempo de desaceleração (TD) foram capazes de predizer a disfunção diastólica (áreas sob a curva [AUCs] = 0,70 e 0,72, respectivamente). Além disso, a razão E/E' lateral mostrou boa utilidade para a identificação da disfunção diastólica (AUC = 0,80). No geral, a ecocardiografia e a RMC apresentaram excelente concordância interobservador e intraobservador (coeficiente de correlação intraclasse 0,72 - 0,97). Conclusão: Uma modelagem 3D de imagens padrões de cine RMC foi capaz de identificar os indivíduos do estudo com função diastólica reduzida e mostrou uma boa reprodutibilidade, sugerindo ter potencial na avaliação rotineira da função diastólica por RMC.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Aged, 80 and over , Stroke Volume/physiology , Atherosclerosis/diagnostic imaging , Magnetic Resonance Imaging , Echocardiography , Observer Variation , Reproducibility of Results , Imaging, Three-Dimensional , Diastole/physiology , Atherosclerosis/physiopathology
8.
Gigascience ; 6(3): 1-15, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28327972

ABSTRACT

BACKGROUND: Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. RESULTS: Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram-Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. CONCLUSIONS: The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org.


Subject(s)
Models, Cardiovascular , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Ventricular Function, Left , Ventricular Remodeling , Adult , Aged , Aged, 80 and over , Algorithms , Asymptomatic Diseases , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Statistical , Myocardial Infarction/diagnosis , ROC Curve , Reproducibility of Results , Risk Factors , Stroke Volume
9.
Arch Dis Child ; 102(1): 40-45, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664264

ABSTRACT

OBJECTIVE: To compare long-term cardiovascular outcomes in survivors of fetal anaemia and intrauterine transfusion with those of non-anaemic siblings. DESIGN: Retrospective cohort study. SETTING: Auckland, New Zealand. PARTICIPANTS: Adults who received intrauterine transfusion for anaemia due to rhesus disease (exposed) and their unexposed sibling(s). EXPOSURE: Fetal anaemia requiring intrauterine transfusion. MAIN OUTCOME MEASURES: Anthropometry, blood pressure, lipids, heart rate variability and cardiac MRI, including myocardial perfusion. RESULTS: Exposed participants (n=95) were younger than unexposed (n=92, mean±SD 33.7±9.3 vs 40.1±10.9 years) and born at earlier gestation (34.3±1.7 vs 39.5±2.1 weeks). Exposed participants had smaller left ventricular volumes (end-diastolic volume/body surface area, difference between adjusted means -6.1, 95% CI -9.7 to -2.4 mL/m2), increased relative left ventricular wall thickness (difference between adjusted means 0.007, 95% CI 0.001 to 0.012 mm.m2/mL) and decreased myocardial perfusion at rest (ratio of geometric means 0.86, 95% CI 0.80 to 0.94). Exposed participants also had increased low frequency-to-high frequency ratio on assessment of heart rate variability (ratio of geometric means 1.53, 95% CI 1.04 to 2.25) and reduced high-density lipoprotein concentration (difference between adjusted means -0.12, 95% CI -0.24 to 0.00 mmol/L). CONCLUSIONS: This study provides the first evidence in humans that cardiovascular development is altered following exposure to fetal anaemia and intrauterine transfusion, with persistence of these changes into adulthood potentially indicating increased risk of cardiovascular disease. These findings are relevant to the long-term health of intrauterine transfusion recipients, and may potentially also have implications for adults born preterm who were exposed to anaemia at a similar postconceptual age.


Subject(s)
Anemia/therapy , Cardiovascular Diseases/embryology , Fetal Diseases/therapy , Adult , Anemia/embryology , Blood Transfusion, Intrauterine , Female , Heart Rate/physiology , Humans , Longitudinal Studies , Magnetic Resonance Angiography , Male , Pilot Projects , Rh Isoimmunization/therapy , Risk Factors , Stroke Volume/physiology , Ventricular Function, Left/physiology
10.
Int J Cardiovasc Imaging ; 33(1): 101-107, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27624468

ABSTRACT

Sparsely sampled cardiac cine accelerated acquisitions show promise for faster evaluation of left-ventricular function. Myocardial strain estimation using image feature tracking methods is also becoming widespread. However, it is not known whether highly accelerated acquisitions also provide reliable feature tracking strain estimates. Twenty patients and twenty healthy volunteers were imaged with conventional 14-beat/slice cine acquisition (STD), 4× accelerated 4-beat/slice acquisition with iterative reconstruction (R4), and a 9.2× accelerated 2-beat/slice real-time acquisition with sparse sampling and iterative reconstruction (R9.2). Radial and circumferential strains were calculated using non-rigid registration in the mid-ventricle short-axis slice and inter-observer errors were evaluated. Consistency was assessed using intra-class correlation coefficients (ICC) and bias with Bland-Altman analysis. Peak circumferential strain magnitude was highly consistent between STD and R4 and R9.2 (ICC = 0.876 and 0.884, respectively). Average bias was -1.7 ± 2.0 %, p < 0.001, for R4 and -2.7 ± 1.9 %, p < 0.001 for R9.2. Peak radial strain was also highly consistent (ICC = 0.829 and 0.785, respectively), with average bias -11.2 ± 18.4 %, p < 0.001, for R4 and -15.0 ± 21.2 %, p < 0.001 for R9.2. STD circumferential strain could be predicted by linear regression from R9.2 with an R2 of 0.82 and a root mean squared error of 1.8 %. Similarly, radial strain could be predicted with an R2 of 0.67 and a root mean squared error of 21.3 %. Inter-observer errors were not significantly different between methods, except for peak circumferential strain R9.2 (1.1 ± 1.9 %) versus STD (0.3 ± 1.0 %), p = 0.011. Although small systematic differences were observed in strain, these were highly consistent with standard acquisitions, suggesting that accelerated myocardial strain is feasible and reliable in patients who require short acquisition durations.


Subject(s)
Heart Diseases/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine , Myocardial Contraction , Ventricular Function, Left , Adult , Aged , Biomechanical Phenomena , Case-Control Studies , Feasibility Studies , Female , Heart Diseases/physiopathology , Humans , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Reproducibility of Results , Stress, Mechanical , Time Factors
11.
IEEE Trans Med Imaging ; 35(11): 2486-2496, 2016 11.
Article in English | MEDLINE | ID: mdl-27323360

ABSTRACT

Cardiac myofibre deformation is an important determinant of the mechanical function of the heart. Quantification of myofibre strain relies on 3D measurements of ventricular wall motion interpreted with respect to the tissue microstructure. In this study, we estimated in vivo myofibre strain using 3D structural and functional atlases of the human heart. A finite element modelling framework was developed to incorporate myofibre orientations of the left ventricle (LV) extracted from 7 explanted normal human hearts imaged ex vivo with diffusion tensor magnetic resonance imaging (DTMRI) and kinematic measurements from 7 normal volunteers imaged in vivo with tagged MRI. Myofibre strain was extracted from the DTMRI and 3D strain from the tagged MRI. We investigated: i) the spatio-temporal variation of myofibre strain throughout the cardiac cycle; ii) the sensitivity of myofibre strain estimates to the variation in myofibre angle between individuals; and iii) the sensitivity of myofibre strain estimates to variations in wall motion between individuals. Our analysis results indicate that end systolic (ES) myofibre strain is approximately homogeneous throughout the entire LV, irrespective of the inter-individual variation in myofibre orientation. Additionally, inter-subject variability in myofibre orientations has greater effect on the variabilities in myofibre strain estimates than the ventricular wall motions. This study provided the first quantitative evidence of homogeneity of ES myofibre strain using minimally-invasive medical images of the human heart and demonstrated that image-based modelling framework can provide detailed insight to the mechanical behaviour of the myofibres, which may be used as a biomarker for cardiac diseases that affect cardiac mechanics.


Subject(s)
Heart/diagnostic imaging , Heart/physiology , Image Processing, Computer-Assisted/methods , Models, Cardiovascular , Myocardial Contraction/physiology , Myofibrils/physiology , Biomechanical Phenomena , Cardiac Imaging Techniques , Finite Element Analysis , Humans , Magnetic Resonance Imaging
12.
J Magn Reson Imaging ; 44(4): 983-92, 2016 10.
Article in English | MEDLINE | ID: mdl-27042817

ABSTRACT

PURPOSE: To examine the feasibility of combining computational fluid dynamics (CFD) and dynamically scaled phantom phase-contrast magnetic resonance imaging (PC-MRI) for coronary flow assessment. MATERIALS AND METHODS: Left main coronary bifurcations segmented from computed tomography with bifurcation angles of 33°, 68°, and 117° were scaled-up ∼7× and 3D printed. Steady coronary flow was reproduced in these phantoms using the principle of dynamic similarity to preserve the true-scale Reynolds number, using blood analog fluid and a pump circuit in a 3T MRI scanner. After PC-MRI acquisition, the data were segmented and coregistered to CFD simulations of identical, but true-scale geometries. Velocities at the inlet region were extracted from the PC-MRI to define the CFD inlet boundary condition. RESULTS: The PC-MRI and CFD flow data agreed well, and comparison showed: 1) small velocity magnitude discrepancies (2-8%); 2) with a Spearman's rank correlation ≥0.72; and 3) a velocity vector correlation (including direction) of r(2) ≥ 0.82. The highest agreement was achieved for high velocity regions with discrepancies being located in slow or recirculating zones with low MRI signal-to-noise ratio (SNRv ) in tortuous segments and large bifurcating vessels. CONCLUSION: Characterization of coronary flow using a dynamically scaled PC-MRI phantom flow is feasible and provides higher resolution than current in vivo or true-scale in vitro methods, and may be used to provide boundary conditions for true-scale CFD simulations. J. MAGN. RESON. IMAGING 2016;44:983-992.


Subject(s)
Blood Flow Velocity/physiology , Coronary Circulation/physiology , Coronary Vessels/diagnostic imaging , Coronary Vessels/physiology , Magnetic Resonance Angiography/instrumentation , Models, Cardiovascular , Phantoms, Imaging , Computer Simulation , Equipment Design , Equipment Failure Analysis , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Reproducibility of Results , Sensitivity and Specificity
13.
J Transl Med ; 13: 343, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26531126

ABSTRACT

BACKGROUND: Although adverse left ventricular shape changes (remodeling) after myocardial infarction (MI) are predictive of morbidity and mortality, current clinical assessment is limited to simple mass and volume measures, or dimension ratios such as length to width ratio. We hypothesized that information maximizing component analysis (IMCA), a supervised feature extraction method, can provide more efficient and sensitive indices of overall remodeling. METHODS: IMCA was compared to linear discriminant analysis (LDA), both supervised methods, to extract the most discriminatory global shape changes associated with remodeling after MI. Finite element shape models from 300 patients with myocardial infarction from the DETERMINE study (age 31-86, mean age 63, 20 % women) were compared with 1991 asymptomatic cases from the MESA study (age 44-84, mean age 62, 52 % women) available from the Cardiac Atlas Project. IMCA and LDA were each used to identify a single mode of global remodeling best discriminating the two groups. Logistic regression was employed to determine the association between the remodeling index and MI. Goodness-of-fit results were compared against a baseline logistic model comprising standard clinical indices. RESULTS: A single IMCA mode simultaneously describing end-diastolic and end-systolic shapes achieved best results (lowest Deviance, Akaike information criterion and Bayesian information criterion, and the largest area under the receiver-operating-characteristic curve). This mode provided a continuous scale where remodeling can be quantified and visualized, showing that MI patients tend to present larger size and more spherical shape, more bulging of the apex, and thinner wall thickness. CONCLUSIONS: IMCA enables better characterization of global remodeling than LDA, and can be used to quantify progression of disease and the effect of treatment. These data and results are available from the Cardiac Atlas Project ( http://www.cardiacatlas.org ).


Subject(s)
Heart Ventricles/physiopathology , Myocardial Infarction/physiopathology , Ventricular Remodeling , Adult , Aged , Aged, 80 and over , Algorithms , Bayes Theorem , Data Collection , Discriminant Analysis , Female , Humans , Male , Middle Aged , Models, Cardiovascular , Models, Statistical , Principal Component Analysis , Ventricular Function, Left
14.
J Cardiovasc Magn Reson ; 17: 86, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26438096

ABSTRACT

BACKGROUND: Pulse wave velocity (PWV), a measure of arterial stiffness, has been demonstrated to be an independent predictor of adverse cardiovascular outcomes. This can be derived non-invasively using cardiovascular magnetic resonance (CMR). Changes in PWV during exercise may reveal further information on vascular pathology. However, most known CMR methods for quantifying PWV are currently unsuitable for exercise stress testing. METHODS: A velocity-sensitive real-time acquisition and evaluation (RACE) pulse sequence was adapted to provide interleaved acquisition of two locations in the descending aorta (at the level of the pulmonary artery bifurcation and above the renal arteries) at 7.8 ms temporal resolution. An automated method was used to calculate the foot-to-foot transit time of the velocity pulse wave. The RACE method was validated against a standard gated phase contrast (STD) method in flexible tube phantoms using a pulsatile flow pump. The method was applied in 50 healthy volunteers (28 males) aged 22-75 years using a MR-compatible cycle ergometer to achieve moderate work rate (38 ± 22 W, with a 31 ± 12 bpm increase in heart rate) in the supine position. Central pulse pressures were estimated using a MR-compatible brachial device. Scan-rescan reproducibility was evaluated in nine volunteers. RESULTS: Phantom PWV was 22 m/s (STD) vs. 26 ± 5 m/s (RACE) for a butyl rubber tube, and 5.5 vs. 6.1 ± 0.3 m/s for a latex rubber tube. In healthy volunteers PWV increased with age at both rest (R(2) = 0.31 p < 0.001) and exercise (R(2) = 0.40, p < 0.001). PWV was significantly increased at exercise relative to rest (0.71 ± 2.2 m/s, p = 0.04). Scan-rescan reproducibility at rest was -0.21 ± 0.68 m/s (n = 9). CONCLUSIONS: This study demonstrates the validity of CMR in the evaluation of PWV during exercise in healthy subjects. The results support the feasibility of using this method in evaluating of patients with systemic aortic disease.


Subject(s)
Aorta/physiology , Exercise Test , Magnetic Resonance Imaging, Cine/methods , Pulse Wave Analysis/methods , Vascular Stiffness , Adult , Aged , Automation , Bicycling , Feasibility Studies , Female , Healthy Volunteers , Heart Rate , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging, Cine/instrumentation , Male , Middle Aged , Phantoms, Imaging , Predictive Value of Tests , Pulse Wave Analysis/instrumentation , Reproducibility of Results , Time Factors , Young Adult
15.
J Cardiovasc Magn Reson ; 17: 63, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26215273

ABSTRACT

BACKGROUND: High reproducibility of LV mass and volume measurement from cine cardiovascular magnetic resonance (CMR) has been shown within single centers. However, the extent to which contours may vary from center to center, due to different training protocols, is unknown. We aimed to quantify sources of variation between many centers, and provide a multi-center consensus ground truth dataset for benchmarking automated processing tools and facilitating training for new readers in CMR analysis. METHODS: Seven independent expert readers, representing seven experienced CMR core laboratories, analyzed fifteen cine CMR data sets in accordance with their standard operating protocols and SCMR guidelines. Consensus contours were generated for each image according to a statistical optimization scheme that maximized contour placement agreement between readers. RESULTS: Reader-consensus agreement was better than inter-reader agreement (end-diastolic volume 14.7 ml vs 15.2-28.4 ml; end-systolic volume 13.2 ml vs 14.0-21.5 ml; LV mass 17.5 g vs 20.2-34.5 g; ejection fraction 4.2 % vs 4.6-7.5 %). Compared with consensus contours, readers were very consistent (small variability across cases within each reader), but bias varied between readers due to differences in contouring protocols at each center. Although larger contour differences were found at the apex and base, the main effect on volume was due to small but consistent differences in the position of the contours in all regions of the LV. CONCLUSIONS: A multi-center consensus dataset was established for the purposes of benchmarking and training. Achieving consensus on contour drawing protocol between centers before analysis, or bias correction after analysis, is required when collating multi-center results.


Subject(s)
Hypertrophy, Left Ventricular/diagnosis , Magnetic Resonance Imaging, Cine , Ventricular Dysfunction, Left/diagnosis , Ventricular Function, Left , Adult , Aged , Canada , Case-Control Studies , Consensus , Europe , Female , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Image Interpretation, Computer-Assisted , Male , Middle Aged , Observer Variation , Predictive Value of Tests , Reproducibility of Results , United States , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
16.
Curr Cardiol Rep ; 17(3): 563, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25648627

ABSTRACT

Large-scale population-based imaging studies of preclinical and clinical heart disease are becoming possible due to the advent of standardized robust non-invasive imaging methods and infrastructure for big data analysis. This gives an exciting opportunity to gain new information about the development and progression of heart disease across population groups. However, the large amount of image data and prohibitive time required for image analysis present challenges for obtaining useful derived data from the images. Automated analysis tools for cardiac image analysis are only now becoming available. This paper reviews the challenges and possible solutions to the analysis of big imaging data in population studies. We also highlight the potential of recent large epidemiological studies using cardiac imaging to discover new knowledge on heart health and well-being.


Subject(s)
Cardiac Imaging Techniques/methods , Cardiovascular Diseases/diagnosis , Humans , Magnetic Resonance Imaging/methods , Models, Anatomic , Myocardial Perfusion Imaging/methods
18.
IEEE J Biomed Health Inform ; 19(4): 1283-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25415993

ABSTRACT

The burden of heart disease is rapidly worsening due to the increasing prevalence of obesity and diabetes. Data sharing and open database resources for heart health informatics are important for advancing our understanding of cardiovascular function, disease progression and therapeutics. Data sharing enables valuable information, often obtained at considerable expense and effort, to be reused beyond the specific objectives of the original study. Many government funding agencies and journal publishers are requiring data reuse, and are providing mechanisms for data curation and archival. Tools and infrastructure are available to archive anonymous data from a wide range of studies, from descriptive epidemiological data to gigabytes of imaging data. Meta-analyses can be performed to combine raw data from disparate studies to obtain unique comparisons or to enhance statistical power. Open benchmark datasets are invaluable for validating data analysis algorithms and objectively comparing results. This review provides a rationale for increased data sharing and surveys recent progress in the cardiovascular domain. We also highlight the potential of recent large cardiovascular epidemiological studies enabling collaborative efforts to facilitate data sharing, algorithms benchmarking, disease modeling and statistical atlases.


Subject(s)
Cardiac Imaging Techniques/methods , Databases, Factual , Information Dissemination/methods , Magnetic Resonance Imaging/methods , Medical Informatics/methods , Models, Cardiovascular , Humans , Internet
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 679-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26736353

ABSTRACT

Survival rates for infants with congenital heart disease (CHD) are improving, resulting in a growing population of adults with CHD. However, the analysis of left and right ventricular function is very time-consuming owing to the variety of congenital morphologies. Efficient customization of patient geometry and function depends on high quality shape templates specifically designed for the application. In this paper, we combine a method for creating finite element shape templates with an interactive template customization to patient MRI examinations. This enables different templates to be chosen depending on patient morphology. To demonstrate this pipeline, a new biventricular template with 162 elements was created and tested in place of an existing 82-element template. The method was able to provide fast interactive biventricular analysis with 0.31 sec per edit response time. The new template was customized to 13 CHD patients with similar biventricular topology, showing improved performance over the previous template and good agreement with clinical indices.


Subject(s)
Heart Defects, Congenital , Humans , Magnetic Resonance Imaging , Patient-Specific Modeling , Ventricular Function, Right
20.
Med Image Comput Comput Assist Interv ; 17(Pt 2): 513-20, 2014.
Article in English | MEDLINE | ID: mdl-25485418

ABSTRACT

Describing the detailed statistical anatomy of the coronary artery tree is important for determining the aetiology of heart disease. A number of studies have investigated geometrical features and have found that these correlate with clinical outcomes, e.g. bifurcation angle with major adverse cardiac events. These methodologies were mainly two-dimensional, manual and prone to inter-observer variability, and the data commonly relates to cases already with pathology. We propose a hybrid atlasing methodology to build a population of computational models of the coronary arteries to comprehensively and accurately assess anatomy including 3D size, geometry and shape descriptors. A random sample of 122 cardiac CT scans with a calcium score of zero was segmented and analysed using a standardised protocol. The resulting atlas includes, but is not limited to, the distributions of the coronary tree in terms of angles, diameters, centrelines, principal component shape analysis and cross-sectional contours. This novel resource will facilitate the improvement of stent design and provide a reference for hemodynamic simulations, and provides a basis for large normal and pathological databases.


Subject(s)
Algorithms , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Subtraction Technique , Tomography, X-Ray Computed/methods , Computer Simulation , Humans , Models, Anatomic , Models, Cardiovascular , Radiographic Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...