Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6675): 1177-1180, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38060658

ABSTRACT

The heaviest chemical elements are naturally produced by the rapid neutron-capture process (r-process) during neutron star mergers or supernovae. The r-process production of elements heavier than uranium (transuranic nuclei) is poorly understood and inaccessible to experiments so must be extrapolated by using nucleosynthesis models. We examined element abundances in a sample of stars that are enhanced in r-process elements. The abundances of elements ruthenium, rhodium, palladium, and silver (atomic numbers Z = 44 to 47; mass numbers A = 99 to 110) correlate with those of heavier elements (63 ≤ Z ≤ 78, A > 150). There is no correlation for neighboring elements (34 ≤ Z ≤ 42 and 48 ≤ Z ≤ 62). We interpret this as evidence that fission fragments of transuranic nuclei contribute to the abundances. Our results indicate that neutron-rich nuclei with mass numbers >260 are produced in r-process events.

2.
Proc Int Astron Union ; 350: 73, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31807134

ABSTRACT

The development of tunable dye lasers and a simple atomic and ionic beam source for all elements were critical in establishing a reliable absolute scale for atomic transition probabilities in the optical to near UV regions. The laboratory astrophysics program at the University of Wisconsin - Madison (UW) concentrates on neutral and singly-ionized species transitions that are observable in astronomical spectra of cool stars, emphasizing the rare earth n(eutron)-capture elements and the Fe-group elements that are important inputs to early Galactic nucleosynthesis studies. The UW program is one of several productive efforts on atomic transition probabilities. These programs generally use time-resolved laser-induced-fluorescence (TR-LIF) to accurately measure total decay rates and data from high resolution Fourier transform spectrometers (FTSs) to determine emission branching fractions (BFs). The UW laboratory results almost always are directly linked to astronomical chemical composition efforts. There are good opportunities to extend similar research to other wavelength regions.

3.
Nature ; 440(7088): 1151-6, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16641987

ABSTRACT

The first stars in the Universe were probably quite different from those born today. Composed almost entirely of hydrogen and helium (plus a tiny trace of lithium), they lacked the heavier elements that determine the formation and evolution of younger stars. Although we cannot observe the very first stars--they died long ago in supernovae explosions--they created heavy elements that were incorporated into the next generation. Here we describe how observations of heavy elements in the oldest surviving stars in our Galaxy's halo help us understand the nature of the first stars--those responsible for the chemical enrichment of our Galaxy and Universe.

4.
Science ; 299(5603): 70-5, 2003 Jan 03.
Article in English | MEDLINE | ID: mdl-12511642

ABSTRACT

We review the origin and evolution of the heavy elements, those with atomic numbers greater than 30, in the early history of the Milky Way. There is a large star-to-star bulk scatter in the concentrations of heavy elements with respect to the lighter metals, which suggests an early chemically unmixed and inhomogeneous Galaxy. The relative abundance patterns among the heavy elements are often very different from the solar system mix, revealing the characteristics of the first element donors in the Galaxy. Abundance comparisons among several halo stars show that the heaviest neutron-capture elements (including barium and heavier) are consistent with a scaled solar system rapid neutron-capture abundance distribution, whereas the lighter such elements do not conform to the solar pattern. The stellar abundances indicate an increasing contribution from the slow neutron-capture process (s-process) at higher metallicities in the Galaxy. The detection of thorium in halo and globular cluster stars offers a promising, independent age-dating technique that can put lower limits on the age of the Galaxy.

SELECTION OF CITATIONS
SEARCH DETAIL
...