Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 91(3): 157-70, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15276623

ABSTRACT

The growth and development of the prostate gland are regulated by androgens. Despite our understanding of molecular actions of 5alpha-dihydrotestosterone (5alpha-DHT) in the prostate through the trans-activation of the androgen receptor (AR), comprehensive analysis of androgen responsive genes (ARGs) has just been started. Moreover, expression changes induced by the androgen effects of 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), a metabolite of 5alpha-DHT through the action of 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), remain undefined. We demonstrated that both 5alpha-DHT and 3alpha-diol stimulated similar levels of androgen sensitive human prostate cancer LNCaP cell proliferation. However, consistent with the fact that 3alpha-diol has low affinity toward the AR, 3alpha-diol did not elicit the same levels of AR trans-activation activity as that of 5alpha-DHT. Since LNCaP cells respond to androgen stimulation by transcriptionally activating the AR downstream genes, gene expression patterns between 0 and 48 h following 3alpha-diol and 5alpha-DHT stimulation were analyzed using cDNA-based membrane arrays to define the temporal regulation of ARGs. Array analysis identified 217 and 219 androgen-modulated genes in at least one time point following 3alpha-diol and 5alpha-DHTstimulation, respectively, including key regulators of cell proliferation. Only a subset of these genes (143) was regulated by both androgens. These data suggest that 3alpha-diol exerts androgenic effects independent of the action of 5alpha-DHT in steroid target tissues. Accordingly, 3alpha-diol might activate cell proliferation cascades independent of AR pathway in the prostate.


Subject(s)
Androstane-3,17-diol/physiology , Cell Division/drug effects , Dihydrotestosterone/metabolism , Prostatic Neoplasms/pathology , Cell Line, Tumor , Gene Expression Profiling , Humans , Male , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics
2.
Tissue Eng ; 10(1-2): 181-7, 2004.
Article in English | MEDLINE | ID: mdl-15009944

ABSTRACT

This study was performed to determine the regenerative properties of smooth muscle cells (SMCs) and urothelial cells (UCs) seeded on small intestinal submucosa (SIS), utilizing a nude mouse model. Human bladder SMCs and UCs were seeded on SIS in a layered coculture fashion. Cell-seeded SIS grafts (1 x 1 cm(2)) were maintained in a CO(2) incubator for 14 days and subsequently folded with the seeded cells facing the lumenal side and implanted subcutaneously into the flanks of nude mice (n = 20). Unseeded SIS grafts were implanted into the contralateral flanks of the mice to serve as controls. Grafts were harvested at 4, 8, and 12 weeks after implantation. By 12 weeks, layered urothelium with a central lumen was noted with early smooth muscle bundle formation peripherally. At each time point, the regenerated SMCs stained positive for alpha-smooth muscle actin, and the UCs stained positive for cytokeratin AE1/AE3. The control group demonstrated no evidence of organized bladder regeneration. This study demonstrates the potential for cell-seeded SIS to induce organized bladder regeneration in vivo. This also provides the basis for additional work utilizing seeded SIS grafts for bladder augmentation.


Subject(s)
Extracellular Matrix/transplantation , Intestine, Small/transplantation , Regeneration/physiology , Tissue Engineering , Urinary Bladder/physiology , Urothelium/cytology , Animals , Mice , Mice, Nude , Neovascularization, Physiologic , Swine , Urinary Bladder/cytology
3.
J Urol ; 171(3): 1348-52, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14767346

ABSTRACT

PURPOSE: Clinically bladder cells used in tissue engineering techniques will come from neuropathic bladders and not normal bladders. We determined if neuropathic bladder smooth muscle (SM) cells (SMCs) retain functional differences when cultured in vitro. MATERIALS AND METHODS: Primary cultures of SMCs were established from patients with a neuropathic bladder (5) and a normal bladder (5). Expression of alpha-SM actin and SM myosin heavy chain was determined using immunocytochemical staining and Western blot analysis. Baseline cell proliferation and the mitogenic response to angiotensin II was assessed by cell counting and cell viability assays. Cell contractility was determined for normal and neuropathic SMCs using an in vitro collagen lattice assay. Cell adherence was measured assessed using partial and complete trypsinization assays. RESULTS: Normal and neuropathic SMCs showed similar morphology in culture, and similar patterns of alpha-SM actin and SM myosin expression. Following 10 days of plating under optimal growth conditions the number of neuropathic SMCs was 170% more than normal SMCs. In response to angiotensin II neuropathic SMCs reached 54% of maximal growth capacity as opposed to 30% for normal SMCs (p <0.01). Neuropathic SMCs contracted significantly less in 10% serum and calcium ionophore (p <0.05), as determined by in vitro contractility assays. Neuropathic SMCs had 19% and 30% less adherent cells than normal SMCs (p <0.01) following isotonic solution washes and trypsinization, respectively. CONCLUSIONS: These results demonstrate that cultured neuropathic bladder SMCs possess and maintain different characteristics than normal SMCs in vitro. The potential clinical implications of using these cells in conjunction with tissue engineering techniques for the promotion of bladder regeneration requires further investigation.


Subject(s)
Muscle, Smooth/pathology , Urinary Bladder, Neurogenic/pathology , Cells, Cultured , Child , Child, Preschool , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...