Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Process Impacts ; 24(10): 1923-1933, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36169554

ABSTRACT

Marine chromophoric dissolved organic matter (m-CDOM) mediates many vital photochemical processes at the ocean's surface. Isolating m-CDOM within the chemical complexity of marine dissolved organic matter has remained an analytical challenge. The SeaSCAPE campaign, a large-scale mesocosm experiment, provided a unique opportunity to probe the in situ production of m-CDOM across phytoplankton and microbial blooms. Results from mass spectrometry coupled with UV-VIS spectroscopy reveal production of a chemodiverse set of compounds well-correlated with increases in absorbance after a bacterial bloom, indicative of autochthonous m-CDOM production. Notably, many of the absorbing compounds were found to be enriched in nitrogen, which may be essential to chromophore function. From these results, quinoids, porphyrins, flavones, and amide-like compounds were identified via structural analysis and may serve as important photosensitizers in the marine boundary layer. Overall, this study demonstrates a step forward in identifying and characterizing m-CDOM using temporal mesocosm data and integrated UV-VIS spectroscopy and mass spectrometry analyses.


Subject(s)
Flavones , Porphyrins , Dissolved Organic Matter , Photosensitizing Agents , Nitrogen , Amides , Spectrometry, Fluorescence/methods
2.
Nat Commun ; 11(1): 2255, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32382079

ABSTRACT

Soil organic matter (SOM) is correlated with reactive iron (Fe) in humid soils, but Fe also promotes SOM decomposition when oxygen (O2) becomes limited. Here we quantify Fe-mediated OM protection vs. decomposition by adding 13C dissolved organic matter (DOM) and 57FeII to soil slurries incubated under static or fluctuating O2. We find Fe uniformly protects OM only under static oxic conditions, and only when Fe and DOM are added together: de novo reactive FeIII phases suppress DOM and SOM mineralization by 35 and 47%, respectively. Conversely, adding 57FeII alone increases SOM mineralization by 8% following oxidation to 57FeIII. Under O2 limitation, de novo reactive 57FeIII phases are preferentially reduced, increasing anaerobic mineralization of DOM and SOM by 74% and 32‒41%, respectively. Periodic O2 limitation is common in humid soils, so Fe does not intrinsically protect OM; rather reactive Fe phases require their own physiochemical protection to contribute to OM persistence.

3.
Environ Sci Technol ; 54(5): 2951-2960, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32023050

ABSTRACT

Permafrost contains a large (1700 Pg C) terrestrial pool of organic matter (OM) that is susceptible to degradation as global temperatures increase. Of particular importance is syngenetic Yedoma permafrost containing high OM content. Reactive iron phases promote stabilizing interactions between OM and soil minerals and this stabilization may be of increasing importance in permafrost as the thawed surface region ("active layer") deepens. However, there is limited understanding of Fe and other soil mineral phase associations with OM carbon (C) moieties in permafrost soils. To elucidate the elemental associations involved in organomineral complexation within permafrost systems, soil cores spanning a Pleistocene permafrost chronosequence (19,000, 27,000, and 36,000 years old) were collected from an underground tunnel near Fairbanks, Alaska. Subsamples were analyzed via scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy at the nano- to microscale. Amino acid-rich moieties decreased in abundance across the chronosequence. Strong correlations between C and Fe with discrete Fe(III) or Fe(II) regions selectively associated with specific OM moieties were observed. Additionally, Ca coassociated with C through potential cation bridging mechanisms. Results indicate Fe(III), Fe(II), and mixed valence phases associated with OM throughout diverse permafrost environments, suggesting that organomineral complexation is crucial to predict C stability as permafrost systems warm.


Subject(s)
Permafrost , Alaska , Carbon , Ferric Compounds , Soil
4.
Environ Sci Technol ; 53(8): 4295-4304, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30843682

ABSTRACT

Iron (oxyhydr)oxides are highly reactive, environmentally ubiquitous organic matter (OM) sorbents that act as mediators of terrestrial and aqueous OM cycling. However, current understanding of environmental iron (oxyhydr)oxide affinity for OM is limited primarily to abiogenic oxides. Bacteriogenic iron (oxyhydr)oxides (BIOs), common to quiescent waterways and soil redox transitions, possess a high affinity for oxyanions (i.e., arsenate and chromate) and suggests that BIOs may be similarly reactive for OM. Using adsorption and desorption batch reactions, paired with Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry, this work demonstrates that BIOs are capable of sorbing leaf litter-extracted DOM and Suwannee River Humic/Fulvic Acid (SRHA/SRFA) and have sorptive preference for distinct organic carbon compound classes at the biomineral interface. BIOs were found to sorb DOM and SRFA to half the extent of 2-line ferrihydrite per mass of sorbent and was resilient to desorption at high ionic strength and in the presence of a competitive ligand. We observed the preferential sorption of aromatic and carboxylic-containing species and concurrent solution enrichment of aliphatic groups unassociated with carboxylic acids. These findings suggest that DOM cycling may be significantly affected by BIOs, which may impact nutrient and contaminant transport in circumneutral environments.


Subject(s)
Iron , Oxides , Adsorption , Humic Substances , Soil
5.
Environ Sci Technol ; 53(2): 642-650, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30525494

ABSTRACT

While the importance of organic matter adsorption onto reactive iron-bearing mineral surfaces to carbon stabilization in soils and sediments has been well-established, fundamental understanding of how compounds assemble at the mineral interface remains elusive. Organic matter is thought to layer sequentially onto the mineral surface, forming molecular architecture stratified by bond strength and compound polarity. However, prominent complexation models lack experimental backing, despite the role of such architecture in fractionated, compound-dependent persistence of organic matter and modulating future perturbations in mineral stabilization capacity. Here, we use kinetic assays and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry under high temporal frequency to directly detect the molecular partitioning of organic matter onto an iron oxyhydroxide during adsorption. We observed three sequential intervals of discrete molecular composition throughout the adsorption reaction, in which rapid primary adsorption of aromatic compounds was followed by secondary lignin-like and tertiary aliphatic compounds. These findings, paired with observed differential fractionation along formulas nitrogen and oxygen content and decreasing selective sorption with reaction time, support "zonal" assembly models. This work presents direct detection of sequential molecular assembly of organic matter at the mineral interface, an important yet abstruse regulator of carbon stabilization and composition across temporal and spatial scales.


Subject(s)
Chemical Fractionation , Ferric Compounds , Adsorption , Organic Chemicals , Soil
6.
Environ Sci Technol ; 52(3): 1036-1044, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29328635

ABSTRACT

Iron (Fe)-bearing mineral phases contribute disproportionately to adsorption of soil organic matter (SOM) due to their elevated chemical reactivity and specific surface area (SSA). However, the spectrum of Fe solid-phase speciation present in oxidation-reduction-active soils challenges analysis of SOM-mineral interactions and may induce differential molecular fractionation of dissolved organic matter (DOM). This work used paired selective dissolution experiments and batch sorption of postextraction residues to (1) quantify the contributions of Fe-bearing minerals of varying crystallinity to DOM sorption, and (2) characterize molecular fractionation using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). A substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures across Fe-OM associations. Sorbed carbon (C) was highly correlated with Fe concentrations, suggesting that Fe-bearing phases are strong drivers of sorption in these soils. Molecular fractionation was observed across treatments, particularly those dominated by short-range-order (SRO) mineral phases, which preferentially adsorbed aromatic and lignin-like formulas, and higher-crystallinity phases, associated with aliphatic DOM. These findings suggest Fe speciation-mediated complexation acts as a physicochemical filter of DOM moving through the critical zone, an important observation as predicted changes in precipitation may dynamically alter Fe crystallinity and C stability.


Subject(s)
Iron , Minerals , Adsorption , Chemical Fractionation , Soil
7.
Proc Natl Acad Sci U S A ; 110(29): 12036-41, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23818621

ABSTRACT

The selection of chromosomal targets for retroviral integration varies markedly, tracking with the genus of the retrovirus, suggestive of targeting by binding to cellular factors. γ-Retroviral murine leukemia virus (MLV) DNA integration into the host genome is favored at transcription start sites, but the underlying mechanism for this preference is unknown. Here, we have identified bromodomain and extraterminal domain (BET) proteins (Brd2, -3, -4) as cellular-binding partners of MLV integrase. We show that purified recombinant Brd4(1-720) binds with high affinity to MLV integrase and stimulates correct concerted integration in vitro. JQ-1, a small molecule that selectively inhibits interactions of BET proteins with modified histone sites impaired MLV but not HIV-1 integration in infected cells. Comparison of the distribution of BET protein-binding sites analyzed using ChIP-Seq data and MLV-integration sites revealed significant positive correlations. Antagonism of BET proteins, via JQ-1 treatment or RNA interference, reduced MLV-integration frequencies at transcription start sites. These findings elucidate the importance of BET proteins for MLV integration efficiency and targeting and provide a route to developing safer MLV-based vectors for human gene therapy.


Subject(s)
Integrases/metabolism , Leukemia Virus, Murine/enzymology , Nuclear Proteins/metabolism , Recombinant Proteins/metabolism , Transcription Factors/metabolism , Transcription Initiation Site/physiology , Virus Integration/physiology , Animals , Azepines , Cell Cycle Proteins , Cell Line, Tumor , Chromatin Immunoprecipitation , HEK293 Cells , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Mass Spectrometry , Mice , NIH 3T3 Cells , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Proteomics/methods , RNA Interference , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Triazoles , Virus Integration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...