Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(7): 5216-5232, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38527911

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation , Cell Membrane/metabolism , Carboxylic Acids/therapeutic use , Benzodioxoles/pharmacology , Aminopyridines/therapeutic use
2.
J Med Chem ; 66(20): 14335-14356, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37823891

ABSTRACT

Tyrosine kinase 2 (TYK2) is a nonreceptor tyrosine kinase that belongs to the JAK family also comprising JAK1, JAK2, and JAK3. TYK2 is an attractive target for various autoimmune diseases as it regulates signal transduction downstream of IL-23 and IL-12 receptors. Selective TYK2 inhibition offers a differentiated clinical profile compared to currently approved JAK inhibitors. However, selectivity for TYK2 versus other JAK family members has been difficult to achieve with small molecules that inhibit the catalytically active kinase domain. Successful targeting of the TYK2 pseudokinase domain as a strategy to achieve isoform selectivity was recently exemplified with deucravacitinib. Described herein is the optimization of selective TYK2 inhibitors targeting the pseudokinase domain, resulting in the discovery of the clinical candidate ABBV-712 (21).


Subject(s)
Autoimmune Diseases , TYK2 Kinase , Humans , Janus Kinases
4.
J Med Chem ; 64(1): 343-353, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33399458

ABSTRACT

Cystic fibrosis (CF) is a life-threatening recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Lumacaftor, it has been shown that administration of one or more small molecules can partially restore the CFTR function. Correctors are small molecules that enhance the amount of CFTR on the cell surface, while potentiators improve the gating function of the CFTR channel. Herein, we describe the discovery and optimization of a novel potentiator series. Scaffold hopping, focusing on retaining the different intramolecular contacts, was crucial in the whole discovery process to identify a novel series devoid of genotoxic liabilities. From this series, the clinical candidate GLPG2451 was selected based on its pharmacokinetic properties, allowing QD dosing and based on its low CYP induction potential.


Subject(s)
Cystic Fibrosis/drug therapy , Drug Discovery , Pyridines/pharmacology , Pyridines/therapeutic use , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats
5.
Front Pharmacol ; 10: 514, 2019.
Article in English | MEDLINE | ID: mdl-31143125

ABSTRACT

The deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) causes a severe defect in folding and trafficking of the chloride channel resulting in its absence at the plasma membrane of epithelial cells leading to cystic fibrosis. Progress in the understanding of the disease increased over the past decades and led to the awareness that combinations of mechanistically different CFTR modulators are required to obtain meaningful clinical benefit. Today, there remains an unmet need for identification and development of more effective CFTR modulator combinations to improve existing therapies for patients carrying the F508del mutation. Here, we describe the identification of a novel F508del corrector using functional assays. We provide experimental evidence that the clinical candidate GLPG/ABBV-2737 represents a novel class of corrector exerting activity both on its own and in combination with VX809 or GLPG/ABBV-2222.

6.
J Med Chem ; 59(10): 4926-47, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27077528

ABSTRACT

Transient receptor potential vanilloid 3 (TRPV3) is a Ca(2+)- and Na(+)-permeable channel with a unique expression pattern. TRPV3 is found in both neuronal and non-neuronal tissues, including dorsal root ganglia, spinal cord, and keratinocytes. Recent studies suggest that TRPV3 may play a role in inflammation, pain sensation, and skin disorders. TRPV3 studies have been challenging, in part due to a lack of research tools such as selective antagonists. Herein, we provide the first detailed report on the development of potent and selective TRPV3 antagonists featuring a pyridinyl methanol moiety. Systematic optimization of pharmacological, physicochemical, and ADME properties of original lead 5a resulted in identification of a novel and selective TRPV3 antagonist 74a, which demonstrated a favorable preclinical profile in two different models of neuropathic pain as well as in a reserpine model of central pain.


Subject(s)
Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Calcium/metabolism , Cyclobutanes/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Conformation , Pyridines/chemistry , Structure-Activity Relationship , TRPV Cation Channels/metabolism
7.
Pharmacol Rev ; 67(3): 601-55, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26084539

ABSTRACT

Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.


Subject(s)
Drug Design , Histamine/metabolism , Receptors, Histamine/drug effects , Animals , Histamine Agonists/pharmacology , Histamine Antagonists/pharmacology , Humans , Ligands , Receptors, Histamine/metabolism
8.
J Pharmacol Exp Ther ; 343(1): 233-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22815533

ABSTRACT

Blockade of the histamine H(3) receptor (H(3)R) enhances central neurotransmitter release, making it an attractive target for the treatment of cognitive disorders. Here, we present in vitro and in vivo pharmacological profiles for the H(3)R antagonist 2-[4'-((3aR,6aR)-5-methyl-hexahydro-pyrrolo[3,4-b]pyrrol-1-yl)-biphenyl-4-yl]-2H-pyridazin-3-one (ABT-288). ABT-288 is a competitive antagonist with high affinity and selectivity for human and rat H(3)Rs (K(i) = 1.9 and 8.2 nM, respectively) that enhances the release of acetylcholine and dopamine in rat prefrontal cortex. In rat behavioral tests, ABT-288 improved acquisition of a five-trial inhibitory avoidance test in rat pups (0.001-0.03 mg/kg), social recognition memory in adult rats (0.03-0.1 mg/kg), and spatial learning and reference memory in a rat water maze test (0.1-1.0 mg/kg). ABT-288 attenuated methamphetamine-induced hyperactivity in mice. In vivo rat brain H(3)R occupancy of ABT-288 was assessed in relation to rodent doses and exposure levels in behavioral tests. ABT-288 demonstrated a number of other favorable attributes, including good pharmacokinetics and oral bioavailability of 37 to 66%, with a wide central nervous system and cardiovascular safety margin. Thus, ABT-288 is a selective H(3)R antagonist with broad procognitive efficacy in rodents and excellent drug-like properties that support its advancement to the clinical area.


Subject(s)
Cognition/drug effects , Cognition/physiology , Histamine H3 Antagonists/pharmacology , Nootropic Agents/pharmacology , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Histamine H3/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Guinea Pigs , HEK293 Cells , Histamine H3 Antagonists/chemistry , Humans , Male , Mice , Nootropic Agents/chemistry , Protein Binding/physiology , Pyridazines/chemistry , Pyrroles/chemistry , Rats , Rats, Inbred SHR , Rats, Long-Evans , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
9.
J Pharmacol Exp Ther ; 343(1): 13-20, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22729221

ABSTRACT

There is growing evidence supporting a role for histamine H(3) receptors in the modulation of pathological pain. To further our understanding of this modulation, we examined the effects of a selective H(3) receptor antagonist, 6-((3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide (GSK189254), on spinal neuronal activity in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of GSK189254 (0.03-1 mg/kg i.v.) dose-dependently decreased both evoked (10-g von Frey hair for 15 s) and spontaneous firing of wide dynamic range (WDR) neurons in neuropathic, but not sham-operated, animals. The effects on spontaneous firing suggest that H(3) receptors may have a role in central sensitization and/or modulating non-evoked pain. Transection of the spinal cord (T9-T10) completely eliminated the effects (both evoked and spontaneous) of systemic GSK189254 (1 mg/kg, i.v.) on WDR neuronal firing in neuropathic rats, indicating that the descending modulatory system has an important role in the H(3)-related dampening of spinal neuronal activity. Subsequently, lesions of the locus coeruleus, or direct GSK189254 (3 and 10 nmol/0.5 µl) injections into this site, demonstrate that the locus coeruleus is a key component of the H(3) descending modulatory pathway. In summary, blockade of H(3) receptors reduces spontaneous firing as well as the responses of spinal nociceptive neurons to mechanical stimulation. This effect is in large part mediated via supraspinal sites, including the locus coeruleus, that send descending projections to modulate spinal neuronal activity.


Subject(s)
Histamine H3 Antagonists/pharmacology , Locus Coeruleus/physiology , Neuralgia/drug therapy , Neuralgia/metabolism , Neurons/metabolism , Neurons/physiology , Receptors, Histamine H3/metabolism , Spinal Cord/pathology , Animals , Benzazepines/pharmacology , Benzazepines/therapeutic use , Histamine H3 Antagonists/therapeutic use , Locus Coeruleus/drug effects , Male , Neuralgia/pathology , Neurons/drug effects , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Niacinamide/therapeutic use , Pyramidal Tracts/drug effects , Pyramidal Tracts/physiology , Rats , Rats, Sprague-Dawley , Receptors, Histamine H3/physiology , Spinal Cord/drug effects , Spinal Cord/metabolism
10.
Eur J Pharmacol ; 684(1-3): 87-94, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22504024

ABSTRACT

Histamine H(3) receptor antagonists have been widely reported to improve performance in preclinical models of cognition, but more recently efficacy in pain models has also been described. Here, A-960656 ((R)-2-(2-(3-(piperidin-1-yl)pyrrolidin-1-yl)benzo[d]thiazol-6-yl)pyridazin-3(2H)-one) was profiled as a new structural chemotype. A-960656 was potent in vitro in histamine H(3) receptor binding assays (rat K(i)=76 nM, human K(i)=21 nM), and exhibited functional antagonism in blocking agonist-induced [(35)S]GTPγS binding (rat H(3) K(b)=107 nM, human H(3) K(b)=22 nM), and was highly specific for H(3) receptors in broad screens for non-H(3) sites. In a spinal nerve ligation model of neuropathic pain in rat, oral doses of 1 and 3mg/kg were effective 60 min post dosing with an ED(50) of 2.17 mg/kg and a blood EC(50) of 639 ng/ml. In a model of osteoarthritis pain, oral doses of 0.1, 0.3, and 1mg/kg were effective 1h post dosing with an ED(50) of 0.52 mg/kg and a blood EC(50) of 233 ng/ml. The antinociceptive effect of A-960656 in both pain models was maintained after sub-chronic dosing up to 12 days. A-960656 had excellent rat pharmacokinetics (t(1/2)=1.9h, 84% oral bioavailability) with rapid and efficient brain penetration, and was well tolerated in CNS behavioral safety screens. In summary, A-960656 has properties well suited to probe the pharmacology of histamine H(3) receptors in pain. Its potency and efficacy in animal pain models provide support to the notion that histamine H(3) receptor antagonists are effective in attenuating nociceptive processes.


Subject(s)
Benzothiazoles/pharmacology , Histamine H3 Antagonists/pharmacology , Neuralgia/drug therapy , Osteoarthritis/drug therapy , Pyridazines/pharmacology , Receptors, Histamine H3/metabolism , Animals , Benzothiazoles/adverse effects , Benzothiazoles/metabolism , Benzothiazoles/pharmacokinetics , Cell Membrane Permeability , Cytochrome P-450 Enzyme Inhibitors , Disease Models, Animal , Dogs , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , HEK293 Cells , Heart/drug effects , Histamine H3 Antagonists/adverse effects , Histamine H3 Antagonists/metabolism , Histamine H3 Antagonists/pharmacokinetics , Humans , Male , Osteoarthritis, Knee/drug therapy , Pyridazines/adverse effects , Pyridazines/metabolism , Pyridazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Substrate Specificity
11.
J Pharmacol Exp Ther ; 336(1): 38-46, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20864505

ABSTRACT

H(3) antagonists increase the release of brain histamine, acetylcholine, noradrenaline, and dopamine, neurotransmitters that are known to modulate cognitive processes. The ability to release brain histamine supports the effect on attention and vigilance, but histamine also modulates other cognitive domains such as short-term and long-term memory. A number of H(3) antagonists, including 1-{3-[3-(4-chlorophenyl)propoxy]propyl}piperidine hydrochloride (BF2.649), (1R,3R)-N-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]cyclobutane-1-carboxamide (PF-03654746), 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), MK-0249 (structure not yet disclosed), JNJ-17216498 (structure not yet disclosed), and ABT-288 (structure not yet disclosed), have advanced to the clinical area for the potential treatment of human cognitive disorders. H(3) antagonists exhibited wake-promoting effects in humans and efficacy in narcoleptic patients, indicating target engagement, but some of them were not efficacious in patients suffering from attention-deficit hyperactivity disorder and schizophrenic patients. Preclinical studies have also shown that H(3) antagonists activate intracellular signaling pathways that may improve cognitive efficacy and disease-modifying effects in Alzheimer's disease. Ongoing clinical studies will be able to determine the utility of H(3) antagonists for the treatment of cognitive disorders in humans.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Drug Discovery , Histamine H3 Antagonists/therapeutic use , Receptors, Histamine H3 , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Animals , Cognition Disorders/metabolism , Cognition Disorders/psychology , Drug Discovery/trends , Histamine H3 Antagonists/metabolism , Humans , Receptors, Histamine H3/metabolism , Treatment Outcome
13.
Brain Res ; 1354: 74-84, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20682302

ABSTRACT

The histamine H(3) receptor is predominantly expressed in the central nervous system and plays a role in diverse physiological mechanisms. In the present study, the effects of GSK189254, a potent and selective H(3) antagonist, were characterized in preclinical pain models in rats. Systemic GSK189254 produced dose-dependent efficacy (ED(50)=0.77 mg/kg i.p.) in a rat model of monoiodoacetate (MIA) induced osteoarthritic (OA) pain as evaluated by hindlimb grip force. The role of H(3) receptors in regulating pain perception was further demonstrated using other structurally distinct H(3) antagonists. GSK189254 also displayed efficacy in a rat surrogate model indicative of central sensitization, namely phase 2 response of formalin-induced flinching, and attenuated tactile allodynia in the spinal nerve ligation model of neuropathic pain (ED(50)=1.5mg/kg i.p.). In addition, GSK189254 reversed persistent (CFA) (ED(50)=2.1mg/kg i.p,), whereas was ineffective in acute (carrageenan) inflammatory pain. When administered intrathecally (i.t.) to the lumbar spinal cord, GSK189254 produced robust effects in relieving the OA pain (ED(50)=0.0027 mg/kg i.t.). The systemic GSK189254 effect was completely reversed by the alpha-adrenergic receptor antagonist phentolamine (i.p. and i.t.) but not by the opioid receptor antagonist naloxone (i.p.). Furthermore, the i.t. GSK189254 effect was abolished when co-administered with phentolamine (i.t.). These results suggest that the spinal cord is an important site of action for H(3) antagonism and the effect can be associated with activation of the noradrenergic system. Our data also provide support that selective H(3) antagonists may represent a class of agents for the treatment of pain disorders.


Subject(s)
Histamine H3 Antagonists/pharmacology , Neurons/drug effects , Norepinephrine/metabolism , Pain Measurement/drug effects , Pain/drug therapy , Receptors, Histamine H3/metabolism , Adrenergic alpha-Antagonists/pharmacology , Analysis of Variance , Animals , Benzazepines/pharmacology , Dose-Response Relationship, Drug , Formaldehyde , Hand Strength , Injections, Spinal , Male , Motor Activity/drug effects , Neurons/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pain/chemically induced , Pain/metabolism , Pain Perception/drug effects , Phentolamine/pharmacology , Rats , Rats, Sprague-Dawley
14.
Bioorg Med Chem Lett ; 20(11): 3295-300, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20457525

ABSTRACT

A series of quinoline containing histamine H(3) antagonists is reported herein. These analogs were synthesized via the Friedlander quinoline synthesis between an aminoaldehyde intermediate and a methyl ketone allowing for a wide diversity of substituents at the 2-position of the quinoline ring.


Subject(s)
Histamine H3 Antagonists/pharmacology , Quinolines/pharmacology , Animals , Humans , In Vitro Techniques , Rats
15.
Bioorg Med Chem Lett ; 20(6): 1900-4, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20171098

ABSTRACT

Three novel series of histamine H(4) receptor (H(4)R) antagonists containing the 2-aminopyrimidine motif are reported. The best of these compounds display good in vitro potency in both functional and binding assays. In addition, representative compounds are able to completely block itch responses when dosed ip in a mouse model of H(4)-agonist induced scratching, thus demonstrating their activities as H(4)R antagonists.


Subject(s)
Aminopyridines/pharmacology , Histamine Antagonists/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Humans , Mice , Receptors, Histamine , Receptors, Histamine H4
16.
Pharmacol Biochem Behav ; 95(1): 41-50, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20004681

ABSTRACT

The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain.


Subject(s)
Analgesics/pharmacology , Disease Models, Animal , Inflammation/drug therapy , Peripheral Nervous System Diseases/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Analgesics/therapeutic use , Animals , Male , Mice , Mice, Inbred BALB C , Radioligand Assay , Rats , Receptors, Histamine , Receptors, Histamine H4
17.
J Med Chem ; 52(15): 4640-9, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19588934

ABSTRACT

A new histamine H3 receptor (H3R) antagonist chemotype 1 was designed by combining key pharmacophoric elements from two different precursor structural series and then simplifying and optimizing the resulting combined structural features. First, analogues were made based on a previously identified conessine-based H3R antagonist series. While the first analogues 11 and 15 showed no antagonistic activity to H3R, the mere addition of a key moiety found in the reference compound 7 (ABT-239) elevated the series to high potency at H3R. The hybrid structure (16b) was judged too synthetically demanding to enable an extensive SAR study, thus forcing a strategy to simplify the chemical structure. The resulting (3aR,6aR)-5-alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrrole series proved to be highly potent, as exemplified by 17a having a human H3 K(i) of 0.54 nM, rat H3 K(i) of 4.57 nM, and excellent pharmacokinetics (PK) profile in rats (oral bioavailability of 39% and t(1/2) of 2.4 h).


Subject(s)
Histamine H3 Antagonists/chemical synthesis , Pyrroles/chemical synthesis , Animals , Drug Design , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Histamine H3 Antagonists/pharmacokinetics , Histamine H3 Antagonists/pharmacology , Humans , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Structure-Activity Relationship
18.
J Med Chem ; 51(22): 7094-8, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18983139

ABSTRACT

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzofurans/pharmacology , Hyperalgesia/drug therapy , Pain/prevention & control , Quinazolines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Carrageenan , Disease Models, Animal , Drug Design , Drug Evaluation, Preclinical , Humans , Hyperalgesia/chemically induced , Ligands , Mice , Molecular Structure , Pain/physiopathology , Peritonitis/drug therapy , Quinazolines/chemical synthesis , Quinazolines/chemistry , Rats , Receptors, Histamine , Receptors, Histamine H4 , Stereoisomerism , Structure-Activity Relationship
19.
J Med Chem ; 51(20): 6571-80, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18811133

ABSTRACT

A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain.


Subject(s)
Histamine Antagonists/chemical synthesis , Histamine Antagonists/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptors, Histamine/metabolism , Animals , Biomarkers , Histamine Antagonists/chemistry , Humans , Hyperplasia/chemically induced , Hyperplasia/prevention & control , Ligands , Locomotion/drug effects , Mice , Molecular Structure , Pyrimidines/chemistry , Rats , Structure-Activity Relationship , Substrate Specificity
20.
J Med Chem ; 51(20): 6547-57, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18817367

ABSTRACT

A new structural class of histamine H 4 receptor antagonists (6-14) was designed based on rotationally restricted 2,4-diaminopyrimidines. Series compounds showed potent and selective in vitro H 4 antagonism across multiple species, good CNS penetration, improved PK properties compared to reference H 4 antagonists, functional H 4 antagonism in cellular and in vivo pharmacological assays, and in vivo anti-inflammatory and antinociceptive efficacy. One compound, 10 (A-943931), combined the best features of the series in a single molecule and is an excellent tool compound to probe H 4 pharmacology. It is a potent H 4 antagonist in functional assays across species (FLIPR Ca (2+) flux, K b < 5.7 nM), has high (>190x) selectivity for H 4, and combines good PK in rats and mice (t 1/2 of 2.6 and 1.6 h, oral bioavailability of 37% and 90%) with anti-inflammatory activity (ED 50 = 37 micromol/kg, mouse) and efficacy in pain models (thermal hyperalgesia, ED 50 = 72 micromol/kg, rat).


Subject(s)
Amines/chemistry , Anti-Inflammatory Agents/chemical synthesis , Histamine Antagonists/chemical synthesis , Histamine Antagonists/therapeutic use , Pain/drug therapy , Pyrimidines/chemical synthesis , Receptors, Histamine/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/classification , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Histamine Antagonists/chemistry , Histamine Antagonists/classification , Ligands , Mice , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/classification , Pyrimidines/therapeutic use , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...