Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823645

ABSTRACT

Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.


Subject(s)
Bone and Bones/physiology , Mesenchymal Stem Cells/cytology , Stress, Mechanical , Tissue Engineering , Bone Transplantation , Humans , Mechanotransduction, Cellular , Osteogenesis
2.
Cells ; 9(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32375335

ABSTRACT

Heterogeneity in cell populations poses a significant challenge for understanding complex cell biological processes. The analysis of cells at the single-cell level, especially single-cell RNA sequencing (scRNA-seq), has made it possible to comprehensively dissect cellular heterogeneity and access unobtainable biological information from bulk analysis. Recent efforts have combined scRNA-seq profiles with genomic or proteomic data, and show added value in describing complex cellular heterogeneity than transcriptome measurements alone. With the rising demand for scRNA-seq for biomedical and clinical applications, there is a strong need for a timely and comprehensive review on the scRNA-seq technologies and their potential biomedical applications. In this review, we first discuss the latest state of development by detailing each scRNA-seq technology, including both conventional and microfluidic technologies. We then summarize their advantages and limitations along with their biomedical applications. The efforts of integrating the transcriptome profile with highly multiplexed proteomic and genomic data are thoroughly reviewed with results showing the integrated data being more informative than transcriptome data alone. Lastly, the latest progress toward commercialization, the remaining challenges, and future perspectives on the development of scRNA-seq technologies are briefly discussed.


Subject(s)
DNA/analysis , Proteins/analysis , Sequence Analysis, RNA , Single-Cell Analysis , Humans , Microfluidics , Proteomics
3.
Article in English | MEDLINE | ID: mdl-30914017

ABSTRACT

BACKGROUND: Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favorable specificity and selectivity for target analytes, and long shelf life. These materials are able to mimic natural recognition entities, including biological receptors and antibodies, providing a versatile platform to achieve the desirable functionality for various biomedical applications. OBJECTIVE: In this review article, we introduce the most recent development of MIPs to date. We first highlight the advantages of using MIPs for a broad range of biomedical applications. We then review their various methods of synthesis along with their latest progress in biomedical applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the existing challenges and future perspectives of MIPs for biomedical applications are briefly discussed. CONCLUSION: We envision that MIPs may be used as potential materials for diverse biomedical applications in the near future.


Subject(s)
Biosensing Techniques/methods , Drug Delivery Systems , Molecular Imaging/methods , Molecular Imprinting , Polymers/chemistry , Animals , Humans
4.
Biotechniques ; 66(1): 40-53, 2019 01.
Article in English | MEDLINE | ID: mdl-30730212

ABSTRACT

Photo-crosslinkable hydrogels have recently attracted significant scientific interest. Their properties can be manipulated in a spatiotemporal manner through exposure to light to achieve the desirable functionality for various biomedical applications. This review article discusses the recent advances of the most common photo-crosslinkable hydrogels, including poly(ethylene glycol) diacrylate, gelatin methacryloyl and methacrylated hyaluronic acid, for various biomedical applications. We first highlight the advantages of photopolymerization and discuss diverse photosensitive systems used for the synthesis of photo-crosslinkable hydrogels. We then introduce their synthesis methods and review their latest state of development in biomedical applications, including tissue engineering and regenerative medicine, drug delivery, cancer therapies and biosensing. Lastly, the existing challenges and future perspectives of engineering photo-crosslinkable hydrogels for biomedical applications are briefly discussed.


Subject(s)
Drug Delivery Systems/methods , Hydrogels/chemistry , Tissue Engineering/methods , Animals , Biosensing Techniques , Gelatin/chemistry , Humans , Hyaluronic Acid/chemistry , Hydrogels/chemical synthesis , Neoplasms/drug therapy , Photochemical Processes , Photochemistry/methods , Polyethylene Glycols/chemistry , Polymerization
5.
Sensors (Basel) ; 19(4)2019 Feb 17.
Article in English | MEDLINE | ID: mdl-30781554

ABSTRACT

Food safety issues have recently attracted public concern. The deleterious effects of compromised food safety on health have rendered food safety analysis an approach of paramount importance. While conventional techniques such as high-performance liquid chromatography and mass spectrometry have traditionally been utilized for the detection of food contaminants, they are relatively expensive, time-consuming and labor intensive, impeding their use for point-of-care (POC) applications. In addition, accessibility of these tests is limited in developing countries where food-related illnesses are prevalent. There is, therefore, an urgent need to develop simple and robust diagnostic POC devices. POC devices, including paper- and chip-based devices, are typically rapid, cost-effective and user-friendly, offering a tremendous potential for rapid food safety analysis at POC settings. Herein, we discuss the most recent advances in the development of emerging POC devices for food safety analysis. We first provide an overview of common food safety issues and the existing techniques for detecting food contaminants such as foodborne pathogens, chemicals, allergens, and toxins. The importance of rapid food safety analysis along with the beneficial use of miniaturized POC devices are subsequently reviewed. Finally, the existing challenges and future perspectives of developing the miniaturized POC devices for food safety monitoring are briefly discussed.


Subject(s)
Hazard Analysis and Critical Control Points/methods , Point-of-Care Systems/trends , Biosensing Techniques/methods , Food Contamination , Food Safety , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...