Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Food ; 4(3): 203-204, 2023 03.
Article in English | MEDLINE | ID: mdl-37118269

Subject(s)
Charcoal , Iron
2.
Nat Food ; 4(3): 268, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37118280
3.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36594827

ABSTRACT

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon Sequestration , Charcoal
4.
Sci Bull (Beijing) ; 67(6): 655-664, 2022 03 30.
Article in English | MEDLINE | ID: mdl-36546127

ABSTRACT

In Australia, the proportion of forest area that burns in a typical fire season is less than for other vegetation types. However, the 2019-2020 austral spring-summer was an exception, with over four times the previous maximum area burnt in southeast Australian temperate forests. Temperate forest fires have extensive socio-economic, human health, greenhouse gas emissions, and biodiversity impacts due to high fire intensities. A robust model that identifies driving factors of forest fires and relates impact thresholds to fire activity at regional scales would help land managers and fire-fighting agencies prepare for potentially hazardous fire in Australia. Here, we developed a machine-learning diagnostic model to quantify nonlinear relationships between monthly burnt area and biophysical factors in southeast Australian forests for 2001-2020 on a 0.25° grid based on several biophysical parameters, notably fire weather and vegetation productivity. Our model explained over 80% of the variation in the burnt area. We identified that burnt area dynamics in southeast Australian forest were primarily controlled by extreme fire weather, which mainly linked to fluctuations in the Southern Annular Mode (SAM) and Indian Ocean Dipole (IOD), with a relatively smaller contribution from the central Pacific El Niño Southern Oscillation (ENSO). Our fire diagnostic model and the non-linear relationships between burnt area and environmental covariates can provide useful guidance to decision-makers who manage preparations for an upcoming fire season, and model developers working on improved early warning systems for forest fires.


Subject(s)
Fires , Wildfires , Humans , Australia , Weather , Forests
5.
Nat Commun ; 13(1): 5177, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056025

ABSTRACT

The soil carbon (C) saturation concept suggests an upper limit to the storage of soil organic carbon (SOC). It is set by the mechanisms that protect soil organic matter from mineralization. Biochar has the capacity to protect new C, including rhizodeposits and microbial necromass. However, the decadal-scale mechanisms by which biochar influences the molecular diversity, spatial heterogeneity, and temporal changes in SOC persistence, remain unresolved. Here we show that the soil C storage ceiling of a Ferralsol under subtropical pasture was raised by a second application of Eucalyptus saligna biochar 8.2 years after the first application-the first application raised the soil C storage ceiling by 9.3 Mg new C ha-1 and the second application raised this by another 2.3 Mg new C ha-1. Linking direct visual evidence from one-, two-, and three-dimensional analyses with SOC quantification, we found high spatial heterogeneity of C functional groups that resulted in the retention of rhizodeposits and microbial necromass in microaggregates (53-250 µm) and the mineral fraction (<53 µm). Microbial C-use efficiency was concomitantly increased by lowering specific enzyme activities, contributing to the decreased mineralization of native SOC by 18%. We suggest that the SOC ceiling can be lifted using biochar in (sub)tropical grasslands globally.


Subject(s)
Carbon , Soil , Carbon Sequestration , Charcoal/chemistry , Soil/chemistry , Soil Microbiology
6.
J Environ Manage ; 302(Pt A): 113964, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34678538

ABSTRACT

Reforestation is identified as one of the key nature-based solutions to deliver carbon dioxide removal, which will be required to achieve the net zero ambition of the Paris Agreement. However, the potential for sequestration through reforestation is uncertain because climate change is expected to affect the drivers of forest growth. This study used the process-based 3-PG model to investigate the effects of climate change on development of above-ground biomass (AGB), as an indicator of forest growth, in regenerating native forests in southeast Australia. We investigated how changing climate affects AGB, by combining historical data and future climate projections based on 25 global climate models (GCMs) for the Coupled Model Intercomparison Project Phase 6 (CMIP6) under two Shared Socioeconomic Pathways. We found that the ensemble means of 25 GCMs indicated an increase in temperature with large variations in projected rainfall. When these changes were applied in 3-PG, we found an increase in the simulated AGB by as much as 25% under a moderate emission scenario. This estimate rose to 51% under a high emission scenario by the end of the 21st century across nine selected sites in southeast Australia. However, when CO2 response was excluded, we found a large decrease in AGB at the nine sites. Our modelling results showed that the modelled response to elevated atmospheric CO2 (the CO2 fertilization effect) was largely responsible for the simulated increase of AGB (%). We found that the estimates of future changes in the AGB were subject to uncertainties originating from climate projections, future emission scenarios, and the assumed response to CO2 fertilization. Such modelling simulation improves understanding of possible climate change impacts on forest growth and the inherent uncertainties in estimating mitigation potential through reforestation, with implications for climate policy in Australia.


Subject(s)
Carbon Sequestration , Climate Models , Biomass , Climate Change , Forests
7.
Anim Nutr ; 7(4): 1219-1230, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34754963

ABSTRACT

Increasingly countries are seeking to reduce emission of greenhouse gases from the agricultural industries, and livestock production in particular, as part of their climate change management. While many reviews update progress in mitigation research, a quantitative assessment of the efficacy and performance-consequences of nutritional strategies to mitigate enteric methane (CH4) emissions from ruminants has been lacking. A meta-analysis was conducted based on 108 refereed papers from recent animal studies (2000-2020) to report effects on CH4 production, CH4 yield and CH4 emission intensity from 8 dietary interventions. The interventions (oils, microalgae, nitrate, ionophores, protozoal control, phytochemicals, essential oils and 3-nitrooxypropanol). Of these, macroalgae and 3-nitrooxypropanol showed greatest efficacy in reducing CH4 yield (g CH4/kg of dry matter intake) at the doses trialled. The confidence intervals derived for the mitigation efficacies could be applied to estimate the potential to reduce national livestock emissions through the implementation of these dietary interventions.

8.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200452, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34565223

ABSTRACT

Agriculture is the largest single source of global anthropogenic methane (CH4) emissions, with ruminants the dominant contributor. Livestock CH4 emissions are projected to grow another 30% by 2050 under current policies, yet few countries have set targets or are implementing policies to reduce emissions in absolute terms. The reason for this limited ambition may be linked not only to the underpinning role of livestock for nutrition and livelihoods in many countries but also diverging perspectives on the importance of mitigating these emissions, given the short atmospheric lifetime of CH4. Here, we show that in mitigation pathways that limit warming to 1.5°C, which include cost-effective reductions from all emission sources, the contribution of future livestock CH4 emissions to global warming in 2050 is about one-third of that from future net carbon dioxide emissions. Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget and the ability to meet stringent temperature limits. We review options to address livestock CH4 emissions through more efficient production, technological advances and demand-side changes, and their interactions with land-based carbon sequestration. We conclude that bringing livestock into mainstream mitigation policies, while recognizing their unique social, cultural and economic roles, would make an important contribution towards reaching the temperature goal of the Paris Agreement and is vital for a limit of 1.5°C. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

9.
Glob Chang Biol ; 27(22): 5726-5761, 2021 11.
Article in English | MEDLINE | ID: mdl-34314548

ABSTRACT

Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been-somewhat myopically-on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low- and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems-aligned 'socio-economic planetary boundaries' offer useful starting points that may uncover leverage points and cross-scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.


Subject(s)
Greenhouse Gases , Myopia , Animals , Carbon , Greenhouse Effect , Greenhouse Gases/analysis , Livestock
11.
Sci Total Environ ; 770: 145278, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736413

ABSTRACT

Woody plant encroachment in agricultural areas reduces agricultural production and is a recognised land degradation problem of global significance. Invasive native scrub (INS) is woody vegetation that invades southern Australian rangelands and is commonly cleared to return land to agricultural production. Clearing of INS emits carbon to the atmosphere, and the retention of INS by landholders for the purpose of avoiding carbon emissions has been incentivized in Australia as an emission reduction strategy. Retaining INS, however, means land remains relatively unproductive because INS negatively impacts livestock production. This desktop study examined whether clearing INS to return an area to production, and pyrolysing residues to produce biochar, has the potential to provide climate change mitigation (the "pyrolysis scenario"). The syngas produced via pyrolysis was assumed to be used to generate electricity that was fed into the electricity grid and avoided the production of electricity from existing sources. In addition, the biochar was assumed to be applied to soils used for wheat production, giving mitigation benefits from reduced N2O emissions from fertiliser use and reduction in the use of lime to ameliorate soil acidity. Relative to clearing INS and burning residues in-situ, the pyrolysis scenario resulted in a reduction in radiative forcing of 1.28 × 10-4 W m2 ha-1 of INS managed, 25 years after clearing, and was greater than the reduction of 1.06 × 10-4 W m2 ha-1 that occurred when INS was retained. The greatest contribution to the climate change mitigation provided by the pyrolysis scenario came from avoided emissions from grid electricity production, while avoided N2O and lime emissions made a relatively minor contribution towards mitigation.


Subject(s)
Climate Change , Pyrolysis , Agriculture , Australia , Charcoal , Nitrous Oxide/analysis , Soil
12.
Sci Total Environ ; 725: 138260, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32298879

ABSTRACT

Climate change threatens humanity yet the provision of food that supports humanity is a major source of greenhouse gases, which exacerbates that threatening process. Developing strategies to reduce the emissions associated with key global commodities is essential to mitigate the impacts of climate change. To date, however, there have been no studies that have estimated the potential to reduce GHG emissions associated with the production of wheat, a key global commodity, at a national scale through changes to wheat production systems. Here, we assess the consequences for net GHG emissions of Australian wheat production from applying three changes to wheat production systems: increasing the rates of fertiliser N to achieve the water-limited yield potential; increasing the frequency of lime applications on acid soils; and changing a two year cropping rotation (from wheat-wheat to legume-wheat). We predict that applying these three changes across the key wheat growing regions in Australia would increase production of wheat and legumes by 17.8 and 5.3 Mt, respectively, over the two-year period. Intensifying Australian production would reduce the need to produce wheat and legumes elsewhere in the world. This would free up agricultural land at the global scale and avoid the need to convert forestland and grassland to cropping lands to meet increasing global demands for wheat. We find that applying these changes across wheat growing zones would reduce the GHGs associated with Australian wheat production by 18.4 Mt CO2-e over the two-year period. Our research supports the notion that intensification of existing agricultural production can provide climate change mitigation. The impacts of intensification on other environmental indicators also need to be considered by policy makers.


Subject(s)
Greenhouse Gases , Triticum , Agriculture , Australia , Climate Change , Greenhouse Effect
13.
Nat Food ; 1(11): 720-728, 2020 Nov.
Article in English | MEDLINE | ID: mdl-37128032

ABSTRACT

Understanding sources of uncertainty in climate-crop modelling is critical for informing adaptation strategies for cropping systems. An understanding of the major sources of uncertainty in yield change is needed to develop strategies to reduce the total uncertainty. Here, we simulated rain-fed wheat cropping at four representative locations in China and Australia using eight crop models, 32 global climate models (GCMs) and two climate downscaling methods, to investigate sources of uncertainty in yield response to climate change. We partitioned the total uncertainty into sources caused by GCMs, crop models, climate scenarios and the interactions between these three. Generally, the contributions to uncertainty were broadly similar in the two downscaling methods. The dominant source of uncertainty is GCMs in Australia, whereas in China it is crop models. This difference is largely due to uncertainty in GCM-projected future rainfall change across locations. Our findings highlight the site-specific sources of uncertainty, which should be one step towards understanding uncertainties for more robust climate-crop modelling.

14.
Glob Chang Biol ; 26(3): 1532-1575, 2020 03.
Article in English | MEDLINE | ID: mdl-31637793

ABSTRACT

There is a clear need for transformative change in the land management and food production sectors to address the global land challenges of climate change mitigation, climate change adaptation, combatting land degradation and desertification, and delivering food security (referred to hereafter as "land challenges"). We assess the potential for 40 practices to address these land challenges and find that: Nine options deliver medium to large benefits for all four land challenges. A further two options have no global estimates for adaptation, but have medium to large benefits for all other land challenges. Five options have large mitigation potential (>3 Gt CO2 eq/year) without adverse impacts on the other land challenges. Five options have moderate mitigation potential, with no adverse impacts on the other land challenges. Sixteen practices have large adaptation potential (>25 million people benefit), without adverse side effects on other land challenges. Most practices can be applied without competing for available land. However, seven options could result in competition for land. A large number of practices do not require dedicated land, including several land management options, all value chain options, and all risk management options. Four options could greatly increase competition for land if applied at a large scale, though the impact is scale and context specific, highlighting the need for safeguards to ensure that expansion of land for mitigation does not impact natural systems and food security. A number of practices, such as increased food productivity, dietary change and reduced food loss and waste, can reduce demand for land conversion, thereby potentially freeing-up land and creating opportunities for enhanced implementation of other practices, making them important components of portfolios of practices to address the combined land challenges.


Subject(s)
Agriculture , Climate Change , Acclimatization , Conservation of Natural Resources , Food Supply
15.
Waste Manag ; 85: 341-350, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30803589

ABSTRACT

Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.


Subject(s)
Refuse Disposal , Wood , Australia , Carbon , Methane , Waste Disposal Facilities
16.
Carbon Balance Manag ; 13(1): 27, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591973

ABSTRACT

BACKGROUND: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. RESULTS: Methane generation rates over incubations of 307-677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4 g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3-43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%-indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. CONCLUSIONS: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.

17.
Sci Total Environ ; 630: 367-378, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29482145

ABSTRACT

Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha-1 at 0-5cm and 9.16MgCha-1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring.

18.
Waste Manag ; 74: 312-322, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29203076

ABSTRACT

Large volumes of engineered wood products (EWPs) and paper are routinely placed in landfills in Australia, where they are assumed to decay. However, the extent of decay for EWPs is not well-known. This study reports carbon loss from EWPs and paper buried in landfills in Sydney, Brisbane and Cairns in Australia, located in temperate, subtropical and tropical climates, respectively. The influence of pulp type (mechanical and chemical) and landfill type (municipal solid waste - MSW and construction and demolition - C&D) on decay levels were investigated. Carbon loss for EWPs ranged from 0.6 to 9.0%; though there is some uncertainty in these values due to limitations associated with sourcing appropriate controls. Carbon loss for paper products ranged from 0 to 58.9%. Papers produced from predominantly mechanical pulps generally had lower levels of decay than those produced via chemical or partly chemical processes. Typically, decay levels for paper products were highest for the tropical Cairns landfill, suggesting that climate may be a significant factor to be considered when estimating emissions from paper in landfills. For EWPs, regardless of the landfill type and climate, carbon losses were low, confirming results from previous laboratory studies. Lower carbon losses were observed for EWP and paper excavated from the Sydney C&D landfill, compared with the Sydney MSW landfill, confirming the hypothesis that conditions in C&D landfills are less favourable for decay. These results have implications for greenhouse gas inventory estimations, as carbon losses for EWPs were lower than the commonly assumed values of 23% (US EPA) and 50% (Intergovernmental Panel on Climate Change). For paper types, we suggest that separate decay factors should be used for papers dominated by mechanical pulp and those produced from mostly chemical pulps, and also for papers buried in tropical or more temperate climates.


Subject(s)
Refuse Disposal , Waste Disposal Facilities , Wood/chemistry , Australia , Carbon , Methane , Solid Waste
19.
Sci Rep ; 7(1): 10726, 2017 09 06.
Article in English | MEDLINE | ID: mdl-28878351

ABSTRACT

Carbon (C) and nitrogen (N) allocation and assimilation are coupled processes, likely influencing C accumulation, N use efficiency and plant productivity in agro-ecosystems. However, dynamics and responses of these processes to management practices in semi-arid agro-ecosystems are poorly understood. A field-based 13CO2 and urea-15N pulse labelling experiment was conducted to track how C and N allocation and assimilation during canola growth from flowering to maturity were affected by short-term (2-year) tillage (T) and no-till (NT) with or without 100 kg urea-N ha-1 (T-0, T-100, NT-0, NT-100) on a Luvisol in an Australian semi-arid region. The T-100 caused greater (P < 0.05) belowground C allocation and higher (P < 0.05) translocation of soil N to shoots and seeds, compared to other treatments. Microbial N uptake was rapid and greatest in the fertilized (cf. non-fertilized) treatments, followed by a rapid release of microbial immobilized N, thus increasing N availability for plant uptake. In contrast, management practices had insignificant impact on soil C and N stocks, aggregate stability, microbial biomass, and 13C retention in aggregate-size fractions. In conclusion, tillage and N fertilization increased belowground C allocation and crop N uptake and yield, possibly via enhancing root-microbial interactions, with minimal impact on soil properties.


Subject(s)
Brassica napus/metabolism , Carbon/metabolism , Crops, Agricultural/metabolism , Nitrogen/metabolism , Soil/chemistry , Analysis of Variance , Carbon/analysis , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Fertilizers , Nitrogen/analysis , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism
20.
Waste Manag ; 61: 129-137, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28041672

ABSTRACT

The poultry industry produces abundant quantities of nutrient-rich litter, much of which is composted before use as a soil amendment. However, a large proportion of nitrogen (N) in poultry litter is lost via volatilisation during composting, with negative environmental and economic consequences. This study examined the effect of incorporating biochar during composting of poultry litter on ammonia (NH3) volatilisation and N retention. Biochars produced at 550°C from greenwaste (GWB) and poultry litter (PLB) feedstocks were co-composted with a mixture of raw poultry litter and sugarcane straw [carbon (C):N ratio 10:1] in compost bins. Ammonia emissions accounted for 17% of the total N (TN) lost from the control and 12-14% from the biochar-amended compost. The TN emitted as NH3, as a percentage of initial TN, was significantly lower (P<0.05) i.e. by 60% and 55% in the compost amended with GWB and PLB, respectively, relative to the control. The proportion of N retained in the finished compost, as a percentage of initial TN, was 84%, 78% and 67% for the GWB, PLB and nil biochar control, respectively. Lower concentration of dissolved organic C (DOC) together with higher activity of beta-glucosidase and leucine-aminopeptidase were found in the GWB-amended compost (cf. control). It is hypothesized that lower NH3 emission in the GWB-amended compost was caused not just by the higher surface area of this biochar but could also be related to greater incorporation of ammonium (NH4+) in organic compounds during microbial utilisation of DOC. Furthermore, the GWB-amended compost retained more NH4+ at the end of composting than the PLB-amended compost. Results showed that addition of biochar, especially GWB, generated multiple benefits in composting of poultry litter: decrease of NH3 volatilisation, decrease in NH3 toxicity towards microorganisms, and improved N retention, thus enhancing the fertiliser value of the composted litter. It is suggested that the latter benefit is linked to a beneficial modification of the microbial environment.


Subject(s)
Charcoal , Manure , Nitrogen , Poultry , Waste Management/methods , Ammonia/analysis , Ammonia/metabolism , Animals , Charcoal/chemistry , Fertilizers , New South Wales , Nitrogen/analysis , Porosity , Soil/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...