Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 438(7070): 988-90, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16355217

ABSTRACT

Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

2.
Science ; 293(5532): 1112-6, 2001 Aug 10.
Article in English | MEDLINE | ID: mdl-11498584

ABSTRACT

The neutral hydrogen (H I) and ionized helium (He II) absorption in the spectra of quasars are unique probes of structure in the early universe. We present Far-Ultraviolet Spectroscopic Explorer observations of the line of sight to the quasar HE2347-4342 in the 1000 to 1187 angstrom band at a resolving power of 15,000. We resolve the He II Lyman alpha (Lyalpha) absorption as a discrete forest of absorption lines in the redshift range 2.3 to 2.7. About 50 percent of these features have H I counterparts with column densities N(H I) > 10(12.3) per square centimeter that account for most of the observed opacity in He II Lyalpha. The He II to H I column density ratio ranges from 1 to >1000, with an average of approximately 80. Ratios of <100 are consistent with photoionization of the absorbing gas by a hard ionizing spectrum resulting from the integrated light of quasars, but ratios of >100 in many locations indicate additional contributions from starburst galaxies or heavily filtered quasar radiation. The presence of He II Lyalpha absorbers with no H I counterparts indicates that structure is present even in low-density regions, consistent with theoretical predictions of structure formation through gravitational instability.

3.
Nature ; 394(6688): 44-6, 1998 Jul 02.
Article in English | MEDLINE | ID: mdl-9665126

ABSTRACT

Models for the composition of the diffuse intergalactic medium predict that low-density intergalactic gas at high redshift should be very poor in heavy elements. This is because locations of early star formation (and thus of heavy-element synthesis) and of gas delivery from such stars are located preferentially within higher-density regions of the intergalactic gas. Here we present a method for analysing carbon and oxygen absorption lines in quasar spectra that allows us to probe the heavy-element abundances at a redshift of three within low-density regions of intergalactic gas. We find that the ratio of triply ionized carbon to neutral hydrogen is roughly constant over a wide range of densities, and that, even as the density approaches zero, the ratio remains high. This unexpected enrichment of low-density gas in heavy elements suggests that early generations of small galaxies might be much more efficient at ejecting heavy elements into the intergalactic medium than has previously been thought.


Subject(s)
Extraterrestrial Environment , Astronomical Phenomena , Astronomy , Carbon/chemistry , Hydrogen/chemistry , Oxygen/chemistry , Spectrum Analysis
4.
Nature ; 385(6612): 137-9, 1997 Jan 09.
Article in English | MEDLINE | ID: mdl-8990115

ABSTRACT

Intergalactic gas clouds at high redshifts have element abundances that are close to primordial. The ratio of deuterium to hydrogen (D/H) within such clouds-which is determined from absorption lines in the spectra of more distant quasars that lie along the same line of sight-provides the best estimate of the density of baryons (omegaB) in the Universe. Previous estimates of D/H in the early Universe have yielded values that differ by about an order of magnitude, with the lower values implying a high density of baryons that may be difficult to reconcile with both estimates of the primordial abundances of other light elements (especially 4He) and the known number of light neutrinos. The accuracy of such D/H determinations is heavily dependent on the inferred column density of neutral hydrogen in the absorbing clouds. Here we report an independent measurement of the neutral hydrogen column density in the cloud towards the quasar Q1937 - 1009, for which one of the low D/H values was derived. Our measurement requires a substantial revision to the D/H value reported previously; we obtain a lower limit of D/H > 4 x 10(-5) for this cloud, which implies omegaB < 0.016 for a Hubble constant of 100 km s(-1) Mpc(-1). This reduced upper limit for the baryon density relieves any conflict with standard Big Bang nucleosynthesis.


Subject(s)
Deuterium/analysis , Extraterrestrial Environment , Evolution, Planetary , Spectrum Analysis
5.
Proc Natl Acad Sci U S A ; 90(11): 4867-70, 1993 Jun 01.
Article in English | MEDLINE | ID: mdl-11607401

ABSTRACT

Various K band galaxy surveys have now established 2.2-m galaxy counts from K = 10 to K = 23. The K band counts rise slightly faster than a Euclidean slope to K = 17, at which point they turn over; beyond this magnitude, galaxies also become much bluer. Spectroscopic samples are available between K = 10 and 20 and show that the conventional distance laws hold rather precisely out to a redshift of about 0.6. Beyond this, galaxies appear fainter than expected. The results appear to favor rapid merging at modest galactic redshifts.

SELECTION OF CITATIONS
SEARCH DETAIL
...