Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Knee ; 47: 160-170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38394995

ABSTRACT

BACKGROUND: Medially stabilised total knee replacement systems aim to provide a more natural feeling knee replacement by providing increased stability through flexion. The aim of this study was to compare the kinematics and wear of two different medially stabilised total knee replacement systems in an experimental simulation study. The Medial Rotation Knee™ system (MRK) is an early medially stabilised knee (>20 years clinical success); the SAIPH® knee system being a more modern and refined, bone conserving evolution of the original design with a larger size range. METHODS: Three SAIPH and three MRK total knee replacements (MatOrtho Ltd, UK) were investigated. The study was performed on a knee simulator with load controlled input kinematic conditions (ISO 14243-1). 6 million cycles of simulation were carried out with the wear of the UHMWPE tibial components assessed gravimetrically. The resulting anterior-posterior translation and tibial rotation position was measured throughout the study. RESULTS: The mean UHMWPE wear rate was 0.57 ± 0.71 and 1.24 ± 2.0 mm3/million cycles for SAIPH and MRK total knee replacement systems respectively with no significant difference in wear (p = 0.24). Analysis of simulator output kinematics showed a larger range of anterior-posterior motion for SAIPH total knee replacements compared to MRK. The magnitude of tibial rotation was low for both knee replacement systems. CONCLUSION: The small magnitude of anterior-posterior displacement and tibial rotation motion demonstrates the inherent stability of this knee system design offered by the constrained medial compartment. This study shows the potential for medially stabilised knee systems as a low polyethylene surface wear solution.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Prosthesis Design , Range of Motion, Articular , Arthroplasty, Replacement, Knee/instrumentation , Humans , Biomechanical Phenomena , Range of Motion, Articular/physiology , Knee Joint/physiopathology , Knee Joint/surgery , Knee Joint/physiology , Materials Testing , Prosthesis Failure , Polyethylenes
2.
R Soc Open Sci ; 11(1): 230431, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38204795

ABSTRACT

Osteochondral grafts are used for repair of focal osteochondral lesions. Autologous grafts are the gold standard treatment; however, limited graft availability and donor site morbidity restrict use. Therefore, there is a clinical need for different graft sources/materials which replicate natural cartilage function. Chitosan has been proposed for this application. The aim of this study was to assess the biomechanics and biotribology of a bioresorbable chitosan/chitosan-nano-hydroxyapatite osteochondral construct (OCC), implanted in an in vitro porcine knee experimental simulation model. The OCC implanted in different surgical positions (flush, proud and inverted) was compared to predicate grafts in current clinical use and a positive control consisting of a stainless steel graft implanted proud of the cartilage surface. After 3 h (10 800 cycles) wear simulation under a walking gait, subsidence occurred in all OCC samples irrespective of surgical positioning, but with no apparent loss of material and low meniscus wear. Half the predicate grafts exhibited delamination and scratching of the cartilage surfaces. No graft subsidence occurred in the positive controls but wear and deformation of the meniscus were apparent. Implanting a new chitosan-based OCC either optimally (flush), inverted or proud of the cartilage surface resulted in minimal wear, damage and deformation of the meniscus.

3.
J Mech Behav Biomed Mater ; 148: 106196, 2023 12.
Article in English | MEDLINE | ID: mdl-37875039

ABSTRACT

PEEK-OPTIMA™ polymer is being considered as an alternative material to cobalt chrome in the femoral component of total knee arthroplasty to give a metal-free knee replacement system. Simple geometry pin-on-plate wear simulation can be used to systematically investigate and understand the wear of materials under many different conditions. The aim of this study was to investigate the wear of UHMWPE-on-PEEK-OPTIMA™ under a range of contact pressure (2.1-80 MPa) and cross-shear ratio (0-0.18) conditions. With increasing contact pressure, there was a trend of decreasing UHMWPE wear factor with a significant difference (p<0.001) in the wear factor of UHMWPE under the different contact pressure conditions of interest. Under uniaxial motion (cross-shear ratio = 0), the wear of UHMWPE was low, introducing multi-axial motion increased the wear of the UHMWPE. There was a significant difference (p<0.01) in the wear factor at different cross-shear ratios however, post hoc analysis showed only the study carried out under unidirectional motion to be significantly different from the other conditions. With varying contact pressure and cross-shear ratio, the wear of UHMWPE against PEEK-OPTIMA™ polymer showed similar trends to previous studies of UHMWPE-on-cobalt chrome.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Polyethylene Glycols , Ketones , Materials Testing , Polyethylenes , Polymers , Cobalt , Prosthesis Failure
4.
PLoS One ; 16(4): e0250077, 2021.
Article in English | MEDLINE | ID: mdl-33901210

ABSTRACT

A range of surgical techniques and osteochondral interventions have been developed for early stage chondral/osteochondral repair interventions in the knee however, methods for functional, pre-clinical assessment of these therapies are limited. In this study, a method for simulating physiological loading and motion in the porcine patellofemoral joint was developed using a 6-axis simulator. As an example of how the method can be used, the influence of surgical positioning of osteochondral allografts in the patella on cartilage wear, deformation and damage and graft stability was investigated in this porcine patellofemoral joint model. The functional performance of allografts implanted either optimally (flush with the cartilage surface) or 1 mm proud of the cartilage surface was compared to a positive control (stainless steel pin implanted 1 mm proud of the cartilage surface), a negative control (no intervention) and a defect model. Allografts implanted flush with the surrounding cartilage could restore the articulating surface of the patella resulting in low wear, damage and deformation of the opposing cartilage surface, similar to that of the negative control group. Implanting the graft proud of the patella surface resulted in cartilage lesions on the femoral trochlea (ICRS grade 2) and a cartilage volume difference of 2.0 ± 3.9 mm3; the positive controls resulted in more severe lesions, a higher volume difference (14.2 ± 7.4 mm3) which in some cases exposed subchondral bone (ICRS grade 4). Defects in the patella caused deformation of the opposing cartilage surface. All grafts implanted in the patella subsided over the duration of the study. This study demonstrated a method that can be used to evaluate osteochondral repair strategies in the patellofemoral joint applying physiological loading and motions.


Subject(s)
Knee Joint/surgery , Patellofemoral Joint/physiology , Allografts , Animals , Cartilage/surgery , Cartilage, Articular , Computer Simulation , Femur/surgery , Knee Joint/physiology , Models, Biological , Patella/surgery , Patellofemoral Joint/anatomy & histology , Swine/physiology , Transplantation, Homologous
5.
Biomater Biosyst ; 4: 100028, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36824573

ABSTRACT

Third body wear of arthroplasty bearing materials can occur when hard particles such as bone, bone cement or metal particles become trapped between the articulating surfaces. This can accelerate overall implant wear, potentially leading to early failure. With the development of novel bearing materials and coatings, there is a need to develop and standardise test methods which reflect third body damage seen on retrieved implants. Many different protocols and approaches have been developed to replicate third body wear in the laboratory but there is currently no consensus as to the optimal method for simulating this wear mode, hence the need to better understand existing methods. The aim of this study was to review published methods for experimental simulation of third body wear of arthroplasty bearing materials, to discuss the advantages and limitations of different approaches, the variables to be considered when designing a method and to highlight gaps in the current literature. The methods were divided into those which introduced abrasive particles into the articulating surfaces of the joint and those whereby third body damage is created directly to the articulating surfaces. However, it was found that there are a number of parameters, for example the influence of particle size on wear, which are not yet fully understood. The study concluded that the chosen method or combination of methods used should primarily be informed by the research question to be answered and risk analysis of the device.

6.
Materials (Basel) ; 13(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722599

ABSTRACT

This study investigated the fixation of a cemented PEEK femoral TKA component. PEEK and CoCr implants were subjected to a walking gait cycle for 10 million cycles (MC), 100,000 cycles or 0 cycles (unloaded control). A method was developed to assess the fixation at the cement-implant interface, which exposed the implants to a fluorescent penetrant dye solution. The lateral condyles of the implants were then sectioned and viewed under fluorescence to investigate bonding at the cement-implant interface and cracking of the cement mantle. When tested for 100,000 cycles, debonding of the cement-implant interface occurred in both PEEK (61%) and CoCr (13%) implants. When the duration of testing was extended (10 MC), the percentage debonding was further increased for both materials to 88% and 61% for PEEK and CoCr, respectively. The unloaded PEEK specimens were 79% debonded, which suggests that, when PEEK femoral components are cemented, complete bonding may never occur. Analysis of cracks in the cement mantle showed an absence of full-thickness cracks in the unloaded control group. For the 100,000-cycle samples, on average, 1.3 and 0.7 cracks were observed for PEEK and CoCr specimens, respectively. After 10 MC, these increased to 24 for PEEK and 19 for CoCr. This was a preliminary study with a limited number of samples investigated, but shows that, after 10 MC under a walking gait, substantial debonding was visible for both PEEK and CoCr implants at the cement-implant interface and no significant difference in the number of cement cracks was found between the two materials.

7.
Materials (Basel) ; 13(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168765

ABSTRACT

PEEK-OPTIMA™ is being considered as an alternative to cobalt chrome (CoCr) in the femoral component of total knee replacements. To date, investigations of ultra-high molecular weight polyethylene (UHMWPE)-on-PEEK have shown an equivalent wear rate to conventional implant materials under standard conditions. In this study, the third body wear performance of UHMWPE-on-PEEK was directly compared to UHMWPE-on-CoCr in a series of pin-on-plate studies using two approaches for third body damage. Damage simulation with particles of bone cement showed a significant (p < 0.001), four-fold increase in the mean surface roughness of PEEK plates compared to CoCr. However, wear simulation against the damaged plates showed no significant difference in the wear of UHMWPE pins against the different materials (p = 0.59), and a polishing effect by the pin against the PEEK plates was observed. Scratching PEEK and CoCr counterfaces with a diamond stylus to create scratches representative of severe third body damage (4 µm lip height) resulted in a significantly higher (p = 0.01) wear of UHMWPE against CoCr compared to PEEK and again, against PEEK plates, polishing by the UHMWPE pin led to a reduction in scratch lip height. This study shows that in terms of its wear performance under third body wear/damage conditions, UHMWPE-on-PEEK differs from conventional knee replacement materials.

8.
Proc Inst Mech Eng H ; 234(2): 163-170, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797727

ABSTRACT

Osteochondral grafts are used clinically to repair cartilage and bone defects and to restore the congruent articulating surfaces of the knee joint following cartilage damage or injury. The clinical success of such osteochondral grafts is heavily reliant on the biomechanical and tribological properties of the surgical repair; however, a limited number of studies have investigated these factors. The aim of this study was to evaluate the influence of graft harvesting and implantation technique as well as bone properties on the primary stability of press-fit implanted osteochondral grafts using a series of uniaxial experimental push-in and push-out tests. Animal (porcine and bovine) knees were used to deliver models of different bone properties (elastic modulus and yield stress). The study showed the graft harvesting method using either a chisel or drill-aided trephine to have no influence on primary graft stability; however, the preparation technique for the graft recipient site was shown to influence the force required to push the graft into the host tissue. For example, when the length of the graft was equal to the recipient site (bottomed), the graft was more stable and dilation of the recipient site was shown to reduce short-term graft stability especially in immature or less dense bone tissue. The push-out tests which compared tissue of different skeletal maturities demonstrated that the maturity of both the graft and host bone tissue to influence the stability of the graft. A higher force was required to push out more skeletally mature grafts from mature bone tissue. The study demonstrates the importance of surgical technique and bone quality/properties on the primary stability and ultimately, the success of osteochondral grafts in the knee.


Subject(s)
Biomechanical Phenomena/physiology , Cartilage, Articular , Femur , Knee Joint , Transplants , Animals , Cartilage, Articular/physiology , Cartilage, Articular/transplantation , Cattle , Elastic Modulus , Femur/physiology , Femur/surgery , Joint Instability , Knee Joint/physiology , Knee Joint/surgery , Models, Biological , Swine , Transplants/physiology , Transplants/surgery
9.
J Mech Behav Biomed Mater ; 89: 65-71, 2019 01.
Article in English | MEDLINE | ID: mdl-30265867

ABSTRACT

PEEK-OPTIMA™ is being considered as an alternative bearing material to cobalt chrome in the femoral component of total knee replacement to provide a metal-free implant. The aim of this study was to investigate the influence of lubricant temperature (standard rig running and elevated temperature (~36 °C)) on the wear of a UHMWPE-on-PEEK OPTIMA™ bearing couple using different lubricant protein concentrations (0%, 2%, 5%, 25% and 90% bovine serum) in a simple geometry pin-on-plate configuration. Friction was also investigated under a single temperature condition for different lubricant protein concentrations. The studies were repeated for UHMWPE-on-cobalt chrome in order to compare relationships with temperature (wear only) and lubricant protein concentration (wear and friction). In low lubricant protein concentrations (≤ 5%) there was no influence of temperature on the wear factors of UHMWPE-on-PEEK. With 25% bovine serum, the wear factor of UHMWPE-on-PEEK reduced by half at elevated temperature. When tested in high protein concentration (90% serum), there was no influence of temperature on the wear factor of UHMWPE-on-PEEK. These temperature dependencies were not the same for UHMWPE-on-cobalt chrome. For both material combinations, there was a trend of decreasing friction with increasing protein concentration once protein was present in the lubricant. This study has shown the importance of the selection of appropriate test conditions when investigating the wear and friction of different materials, in order to minimise test artefacts such as polymer transfer, and protein precipitation and deposition.


Subject(s)
Friction , Ketones/chemistry , Materials Testing , Polyethylene Glycols/chemistry , Polyethylenes/chemistry , Arthroplasty, Replacement, Knee , Benzophenones , Polymers , Prosthesis Design , Prosthesis Failure , Temperature
10.
Proc Inst Mech Eng H ; 231(7): 634-642, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28661229

ABSTRACT

Complications of patellofemoral arthroplasty often occur soon after implantation and, as well as other factors, can be due to the design of the implant or its surgical positioning. A number of studies have previously considered the wear of ultra-high-molecular-weight polyethylene patellae following suboptimal implantation; however, studies have primarily been carried out under a limited number of degrees of freedom. The aim of this study was to develop a protocol to assess the wear of patellae under a malaligned condition in a six-axis patellofemoral joint simulator. The malalignment protocol hindered the tracking of the patella centrally in the trochlear groove and imparted a constant 5° external rotation (tilt) on the patella button. Following 3 million cycles of wear simulation, this condition had no influence on the wear of ultra-high-molecular-weight polyethylene patellae aged for 4 years compared to well-positioned non-aged implants (p > 0.05). However, under the malaligned condition, ultra-high-molecular-weight polyethylene patellae aged 8-10 years after unpacking (following sterilisation by gamma irradiation in an inert atmosphere) and worn ultra-high-molecular-weight polyethylene components also aged 4 years after unpacking (following the same sterilisation process) exhibited a high rate of wear. Fatigue failure due to elevated contact stress led to delamination of the ultra-high-molecular-weight polyethylene and in some cases complete failure of the patellae. The results suggest that suboptimal tracking of the patella in the trochlear groove and tilt of the patella button could have a significant effect on the wear of ultra-high-molecular-weight polyethylene and could lead to implant failure.


Subject(s)
Atmosphere , Femur/surgery , Gamma Rays , Knee Prosthesis , Patella/surgery , Polyethylenes , Sterilization , Biocompatible Materials , Materials Testing , Prosthesis Failure , Surface Properties , Time Factors
11.
Proc Inst Mech Eng H ; 230(11): 1008-1015, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27637723

ABSTRACT

PEEK-OPTIMA™ (Invibio Ltd, UK) has been considered as an alternative joint arthroplasty bearing material due to its favourable mechanical properties and the biocompatibility of its wear debris. In this study, the potential to use injection moulded PEEK-OPTIMA™ as an alternative to cobalt chrome in the femoral component of a total knee replacement was investigated in terms of its wear performance. Experimental wear simulation of three cobalt chrome and three PEEK-OPTIMA™ femoral components articulating against all-polyethylene tibial components was carried out under two kinematic conditions: 3 million cycles under intermediate kinematics (maximum anterior-posterior displacement of 5 mm) followed by 3 million cycles under high kinematic conditions (anterior-posterior displacement 10 mm). The wear of the GUR1020 ultra-high-molecular-weight polyethylene tibial components was assessed by gravimetric analysis; for both material combinations under each kinematic condition, the mean wear rates were low, that is, below 5 mm3/million cycles. Specifically, under intermediate kinematic conditions, the wear rate of the ultra-high-molecular-weight polyethylene tibial components was 0.96 ± 2.26 mm3/million cycles and 2.44 ± 0.78 mm3/million cycle against cobalt chrome and PEEK-OPTIMA™ implants, respectively (p = 0.06); under high kinematic conditions, the wear rates were 2.23 ± 1.85 mm3/million cycles and 4.44 ± 2.35 mm3/million cycles, respectively (p = 0.03). Following wear simulation, scratches were apparent on the surface of the PEEK-OPTIMA™ femoral components. The surface topography of the femoral components was assessed using contacting profilometry and showed a statistically significant increase in measured surface roughness of the PEEK-OPTIMA™ femoral components compared to the cobalt chrome implants. However, this did not appear to influence the wear rate, which remained linear over the duration of the study. These preliminary findings showed that PEEK-OPTIMA™ gives promise as an alternative bearing material to cobalt chrome alloy in the femoral component of a total knee replacement with respect to wear performance.


Subject(s)
Ketones , Knee Prosthesis , Polyethylene Glycols , Arthroplasty, Replacement, Knee , Benzophenones , Biocompatible Materials , Biomechanical Phenomena , Chromium Alloys , Humans , Materials Testing , Polymers , Prosthesis Failure
12.
Proc Inst Mech Eng H ; 230(8): 775-83, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27312481

ABSTRACT

Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan(®) (Biocomposites Ltd., Keele, UK) and Osteoset(®) (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan(®) was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset(®) led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches were not of sufficient magnitude to increase the wear of ultra-high-molecular-weight polyethylene above that of the negative controls.


Subject(s)
Joint Prosthesis , Polyethylenes/chemistry , Prosthesis Failure , Biocompatible Materials , Biomechanical Phenomena , Bone Cements , Bone Substitutes , Chromium Alloys , Humans , Materials Testing/instrumentation , Reoperation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...