Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Clin Genet ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606545

ABSTRACT

Telomere biology disorder (TBD) can present within a wide spectrum of symptoms ranging from severe congenital malformations to isolated organ dysfunction in adulthood. Diagnosing TBD can be challenging given the substantial variation in symptoms and age of onset across generations. In this report, we present two families, one with a pathogenic variant in ZCCHC8 and another with a novel variant in TERC. In the literature, only one family has previously been reported with a ZCCHC8 variant and TBD symptoms. This family had multiple occurrences of pulmonary fibrosis and one case of bone marrow failure. In this paper, we present a second family with the same ZCCHC8 variant (p.Pro186Leu) and symptoms of TBD including pulmonary fibrosis, hematological disease, and elevated liver enzymes. The suspicion of TBD was confirmed with the measurement of short telomeres in the proband. In another family, we report a novel likely pathogenic variant in TERC. Our comprehensive description encompasses hematological manifestations, as well as pulmonary and hepatic fibrosis. Notably, there are no other reports which associate this variant to disease. The families expand our understanding of the clinical implications and genetic causes of TBD.

2.
Clin Cancer Res ; 28(24): 5306-5316, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36222848

ABSTRACT

PURPOSE: We hypothesized that resistance to hypomethylating agents (HMA) among patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA. PATIENTS AND METHODS: We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginning with guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle. Primary endpoints were safety and tolerability; secondary endpoints were overall response rate (ORR) and survival. RESULTS: Thirty-three patients, median age 73 (range 54-85), were treated. Thirty patients had MDS and 3 had CMML, with 30% relapsed and 70% refractory. No dose-limiting toxicities were observed in Phase I. There were 3 (9%) deaths in ≤ 30 days. Five patients (16%) came off study for drug-related toxicity. Immune-related adverse events (IRAE) occurred in 12 (36%) patients (4 grade 3, 3 grade 2, and 5 grade1). ORR was 33% [95% confidence interval (CI), 19%-52%] with 2 complete remission (CR), 3 hematologic improvement, 5 marrow CR, and 1 partial remission. Median overall survival was 15.1 (95% CI, 8.5-25.3) months. CONCLUSIONS: Guadecitabine with atezolizumab has modest efficacy with manageable IRAEs and typical cytopenia-related safety concerns for patients with relapsed or refractory MDS and CMML.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Aged , Leukemia, Myelomonocytic, Chronic/drug therapy , Treatment Outcome , T-Lymphocytes , Myelodysplastic Syndromes/drug therapy
3.
Nat Commun ; 13(1): 3595, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739121

ABSTRACT

Differentiation of multipotent stem cells into mature cells is fundamental for development and homeostasis of mammalian tissues, and requires the coordinated induction of lineage-specific transcriptional programs and cell cycle withdrawal. To understand the underlying regulatory mechanisms of this fundamental process, we investigated how the tissue-specific transcription factors, CEBPA and CEBPE, coordinate cell cycle exit and lineage-specification in vivo during granulocytic differentiation. We demonstrate that CEBPA promotes lineage-specification by launching an enhancer-primed differentiation program and direct activation of CEBPE expression. Subsequently, CEBPE confers promoter-driven cell cycle exit by sequential repression of MYC target gene expression at the G1/S transition and E2F-meditated G2/M gene expression, as well as by the up-regulation of Cdk1/2/4 inhibitors. Following cell cycle exit, CEBPE unleashes the CEBPA-primed differentiation program to generate mature granulocytes. These findings highlight how tissue-specific transcription factors coordinate cell cycle exit with differentiation through the use of distinct gene regulatory elements.


Subject(s)
Gene Expression Regulation , Transcription Factors , Animals , Cell Cycle , Cell Differentiation/genetics , Granulocytes/metabolism , Mammals/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Blood Adv ; 6(11): 3541-3550, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35427424

ABSTRACT

Bone marrow specimens are the core of the diagnostic workup of patients with cytopenia. To explore whether next-generation sequencing (NGS) could be used to rule out malignancy without bone marrow specimens, we incorporated NGS in a model to predict presence of disease in the bone marrow of patients with unexplained cytopenia. We analyzed the occurrence of mutations in 508 patients with cytopenia, referred for primary workup of a suspected hematologic malignancy from 2015 to 2020. We divided patients into a discovery (n = 340) and validation (n = 168) cohort. Targeted sequencing, bone marrow biopsy, and complete blood count were performed in all patients. Mutations were identified in 267 (53%) and abnormal bone marrow morphology in 188 (37%) patients. Patients with isolated neutropenia had the lowest frequency of both mutations (21%) and abnormal bone marrow morphology (5%). The median number of mutations per patient was 2 in patients with abnormal bone marrow morphology compared with 0 in patients with a nondiagnostic bone marrow morphology (P < .001). In a multivariable logistic regression, mutations in TET2, SF3B1, U2AF1, TP53, and RUNX1 were significantly associated with abnormal bone marrow morphology. In the validation cohort, a model combining mutational status and clinical data identified 34 patients (20%) without abnormal bone marrow morphology with a sensitivity of 100% (95% confidence interval: 93%-100%). Overall, we show that NGS combined with clinical data can predict the presence of abnormal bone marrow morphology in patients with unexplained cytopenia and thus can be used to assess the need of a bone marrow biopsy.


Subject(s)
Anemia , Bone Marrow Diseases , Myelodysplastic Syndromes , Anemia/pathology , Bone Marrow/pathology , Bone Marrow Diseases/pathology , High-Throughput Nucleotide Sequencing , Humans , Mutation , Myelodysplastic Syndromes/genetics
5.
Front Immunol ; 9: 2717, 2018.
Article in English | MEDLINE | ID: mdl-30534124

ABSTRACT

Lipocalin-2 is a constituent of the neutrophil secondary granules and is expressed de novo by macrophages and epithelium in response to inflammation. Lipocalin-2 acts in a bacteriostatic fashion by binding iron-loaded siderophores required for bacterial growth. Mycobacterium tuberculosis (M.tb) produces siderophores that can be bound by lipocalin-2. The impact of lipocalin-2 in the innate immune response toward extracellular bacteria has been established whereas the effect on intracellular bacteria, such as M.tb, is less well-described. Here we show that lipocalin-2 surprisingly confers a growth advantage on M.tb in the early stages of infection (3 weeks post-challenge). Using mixed bone marrow chimeras, we demonstrate that lipocalin-2 derived from granulocytes, but not from epithelia and macrophages, leads to increased susceptibility to M.tb infection. In contrast, lipocalin-2 is not observed to promote mycobacterial growth at later stages of M.tb infection. We demonstrate co-localization of granulocytes and mycobacteria within the nascent granulomas at week 3 post-challenge, but not in the consolidated granulomas at week 5. We hypothesize that neutrophil-derived lipocalin-2 acts to supply a source of iron to M.tb in infected macrophages within the immature granuloma, thereby facilitating mycobacterial growth.


Subject(s)
Granulocytes/immunology , Granuloma/immunology , Immunity, Innate , Lipocalin-2/immunology , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Animals , Granulocytes/pathology , Granuloma/genetics , Granuloma/microbiology , Granuloma/pathology , Lipocalin-2/genetics , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , Tuberculosis/genetics , Tuberculosis/pathology
6.
Gastroenterol Res Pract ; 2018: 9307848, 2018.
Article in English | MEDLINE | ID: mdl-29977289

ABSTRACT

BACKGROUND: Small mothers against decapentaplegic (SMAD)4 and SMAD7 are key regulatory components in the immunosuppressive transforming growth factor- (TGF-) ß signaling pathway, which is defective in inflammatory bowel disease (IBD). SMAD4 may play an important role in the pathogenesis of IBD as indicated in experimental models of colitis. AIMS: To examine the ileal expression levels of SMAD4 and to correlate these with CD disease activity. METHODS: The material comprised 29 CD patients (13 with active disease, 16 in remission) and 9 asymptomatic patients referred for ileocolonoscopy as part of an adenoma surveillance program serving as controls. Patients were examined with ileocolonoscopy. Corresponding ileal biopsies were obtained for histological analysis and assessment of SMAD4 and SMAD7 protein expression by immunohistochemistry (IHC). RESULTS: The protein expression of SMAD4 was significantly downregulated in ileal tissue sections from CD patients as compared to healthy controls (p < 0.001). Further, luminal SMAD4 expression was inversely correlated with endoscopic (rs = -0.315; p = 0.05) and histopathological activity (rs = -0.40; p = 0.013). CONCLUSIONS: The SMAD4 epithelial protein level was markedly downregulated in CD patients and inversely correlated with disease activity. This may contribute to defective mucosal TGF-ß signaling in active IBD.

7.
J Pharmacol Toxicol Methods ; 88(Pt 1): 72-78, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28716665

ABSTRACT

INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors (FPRs) in human neutrophils. METHODS: Neutrophils were isolated from fresh human blood and their responses to FPR1 and FPR2 agonists, i.e. compound 43, fMLF and WKYMVm were measured in a label-free DMR assay using Epic Benchtop System from Corning®. Obtained DMR traces were used to calculate agonist potencies. RESULTS: The potencies (pEC50) of fMLF, WKYMVm and compound 43, determined on human neutrophils using the label-free DMR assay were 8.63, 7.76 and 5.92, respectively. The DMR response to fMLF, but not WKYMVm and compound 43 could be blocked by the FPR1-specific antagonist cyclosporin H. DISCUSSION: We conclude that the DMR assay can be used, and complements more traditional methods, to study the signalling and pharmacology of endogenous FPR receptors in human neutrophils.


Subject(s)
Biological Assay/methods , Biosensing Techniques/methods , Neutrophils/metabolism , Receptors, Formyl Peptide/metabolism , Signal Transduction/drug effects , Cell Separation/methods , Humans , Neutrophils/drug effects , Oligopeptides/pharmacology , Receptors, Formyl Peptide/antagonists & inhibitors
8.
Sci Rep ; 7(1): 3852, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634324

ABSTRACT

Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.


Subject(s)
Host-Pathogen Interactions/immunology , Inflammation/etiology , Inflammation/metabolism , Lectins/metabolism , Lipopolysaccharides/immunology , Animals , Cytokines/metabolism , Gene Expression , Inflammation/mortality , Lectins/genetics , Lipopolysaccharides/metabolism , Mice , Morbidity , Mortality , Protein Binding , Spleen/metabolism , Transcriptome , Ficolins
11.
Gene ; 615: 35-40, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28322996

ABSTRACT

t(8;21) acute myeloid leukemia (AML) is characterized by a translocation between chromosomes 8 and 21 and formation of a distinctive RUNX1-RUNX1T1 fusion transcript. This translocation places RUNX1T1 under control of the RUNX1 promoter leading to a pronounced upregulation of RUNX1T1 transcripts in t(8;21) AML, compared to normal hematopoietic cells. We investigated the role of highly-upregulated RUNX1T1 under the hypothesis that it acts as competing endogenous RNA (ceRNA) titrating microRNAs (miRNAs) away from their target transcripts and thus contributes to AML formation. Using publicly available t(8;21) AML RNA-Seq and miRNA-Seq data available from The Cancer Genome Atlas (TCGA) project, we obtained a network consisting of 605 genes that may act as ceRNAs competing for miRNAs with the suggested RUNX1T1 miRNA sponge. Among the 605 ceRNA candidates, 121 have previously been implied in cancer development. Players in the integrin, cadherin, and Wnt signaling pathways affected by the RUNX1T1 sponge were overrepresented. Finally, among a set of 21 high interest RUNX1T1 ceRNAs we found multiple genes that have previously been linked to AML formation. In conclusion, our study offers a novel look at the role of the RUNX1-RUNX1T1 fusion transcript in t(8;21) AML beyond previously investigated genetic and epigenetic aberrations.


Subject(s)
Chromosomes, Human, Pair 21 , Chromosomes, Human, Pair 8 , Leukemia, Myeloid, Acute/genetics , MicroRNAs , Proto-Oncogene Proteins/genetics , Transcription Factors/genetics , 3' Untranslated Regions , Binding Sites , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Leukemic , Gene Ontology , Humans , MicroRNAs/metabolism , Oncogene Proteins, Fusion/genetics , Protein Interaction Maps , RUNX1 Translocation Partner 1 Protein , Translocation, Genetic , Wnt Signaling Pathway/genetics
12.
PLoS One ; 11(10): e0164985, 2016.
Article in English | MEDLINE | ID: mdl-27755585

ABSTRACT

Jumonji Domain-Containing Protein 3 (JMJD3)/lysine demethylase 6B (KDM6B) is an epigenetic modulator that removes repressive histone marks on genes. Expression of KDM6B mRNA is elevated in leukocytes from patients with ANCA-associated vasculitis (AAV) and has been suggested to be the reason for higher proteinase 3 (PR3) mRNA expression in these cells due to derepression of PRTN3 gene transcription. MicroRNA-941 (miR-941) has been shown to target KDM6B mRNA and inhibit JMJD3 production. We therefore investigated whether polymorphonuclear granulocytes (PMNs) from patients suffering from granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA patients and healthy controls, and that miR-941 does not uniformly regulate KDM6B mRNA levels by inducing degradation of the transcript. Thus, decreased miR-941 expression in PMNs cannot be part of the pathogenesis of GPA.


Subject(s)
Granulomatosis with Polyangiitis/pathology , MicroRNAs/metabolism , Neutrophils/metabolism , Adult , Aged, 80 and over , Case-Control Studies , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Granulomatosis with Polyangiitis/genetics , Granulomatosis with Polyangiitis/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Middle Aged , Myeloblastin/genetics , Myeloblastin/metabolism , Principal Component Analysis , RNA, Messenger/metabolism , Receptors, IgG/genetics , Receptors, IgG/metabolism , Transcriptome , Young Adult
13.
J Immunol ; 197(5): 1989-99, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27481851

ABSTRACT

Emergency granulopoiesis refers to the increased production of neutrophils in bone marrow and their release into circulation induced by severe infection. Several studies point to a critical role for G-CSF as the main mediator of emergency granulopoiesis. However, the consequences of G-CSF stimulation on the transcriptome of neutrophils and their precursors have not yet been investigated in humans. In this work, we examine the changes in mRNA expression induced by administration of G-CSF in vivo, as a model of emergency granulopoiesis in humans. Blood samples were collected from healthy individuals after 5 d of G-CSF administration. Neutrophil precursors were sorted into discrete stages of maturation by flow cytometry, and RNA was subjected to microarray analysis. mRNA levels were compared with previously published expression levels in corresponding populations of neutrophil precursors isolated from bone marrow of untreated, healthy individuals. One thousand one hundred and ten mRNAs were differentially expressed >2-fold throughout terminal granulopoiesis. Major changes were seen in pathways involved in apoptosis, cytokine signaling, and TLR pathways. In addition, G-CSF treatment reduced the levels of four of five measured granule proteins in mature neutrophils, including the proantibacterial protein hCAP-18, which was completely deficient in neutrophils from G-CSF-treated donors. These results indicate that multiple biological processes are altered to satisfy the increased demand for neutrophils during G-CSF-induced emergency granulopoiesis in humans.


Subject(s)
Gene Expression , Granulocyte Colony-Stimulating Factor/pharmacology , Leukopoiesis/genetics , Neutrophils/physiology , Antimicrobial Cationic Peptides/deficiency , Antimicrobial Cationic Peptides/genetics , Apoptosis/immunology , Cell Movement , Cytokines/immunology , Cytokines/metabolism , Healthy Volunteers , Humans , Microarray Analysis , Neutrophils/drug effects , Recombinant Proteins/immunology , Cathelicidins
14.
Immunol Rev ; 273(1): 11-28, 2016 09.
Article in English | MEDLINE | ID: mdl-27558325

ABSTRACT

Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated.


Subject(s)
Cell Degranulation , Cytoplasmic Granules/metabolism , Neutrophil Activation , Neutrophils/physiology , Secretory Vesicles/metabolism , Cell Differentiation , Hematopoiesis , Humans , Phagosomes/metabolism , Protein Transport
15.
J Innate Immun ; 8(6): 579-588, 2016.
Article in English | MEDLINE | ID: mdl-27467404

ABSTRACT

Aspergillus fumigatus is an opportunistic fungal pathogen that causes severe invasive infections in immunocompromised patients. Innate immunity plays a major role in protection against A. fumigatus. The ficolins are a family of soluble pattern recognition receptors that are capable of activating the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus. Ficolin knockout mice showed significantly higher fungal loads in the lungs 24 h postinfection compared to wild-type mice. The delayed clearance of A. fumigatus in ficolin knockout mice could not be attributed to a compromised recruitment of inflammatory cells. However, it was revealed that ficolin knockout mice exhibited a decreased production of proinflammatory cytokines in the lungs compared to wild-type mice following A. fumigatus infection. The impaired clearance and cytokine production in ficolin knockout mice was independent of complement, as shown by equivalent levels of A. fumigatus-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo.


Subject(s)
Aspergillosis/immunology , Aspergillus fumigatus/immunology , Complement Pathway, Mannose-Binding Lectin , Immunomodulation , Inflammation/immunology , Lectins/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Female , Immunity, Innate , Lectins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Pattern Recognition/immunology , Ficolins
16.
BMC Immunol ; 16: 70, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26608132

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are important for the development and function of neutrophils. miR-130a is highly expressed during early neutrophil development and regulates target proteins important for this process. miRNA targets are often identified by validating putative targets found by in silico prediction algorithms one at a time. However, one miRNA can have many different targets, which may vary depending on the context. Here, we investigated the effect of miR-130a on the proteome of a murine and a human myeloid cell line. RESULTS: Using pulsed stable isotope labelling of amino acids in cell culture and mass spectrometry for protein identification and quantitation, we found 44 and 34 proteins that were significantly regulated following inhibition of miR-130a in a miR-130a-overexpressing 32Dcl3 clone and Kasumi-1 cells, respectively. The level of miR-130a inhibition correlated with the impact on protein levels. We used RAIN, a novel database for miRNA-protein and protein-protein interactions, to identify putative miR-130a targets. In the 32Dcl3 clone, putative targets were more up-regulated than the remaining quantified proteins following miR-130a inhibition, and three significantly derepressed proteins (NFYC, ISOC1, and CAT) are putative miR-130a targets with good RAIN scores. We also created a network including inferred, putative neutrophil miR-130a targets and identified the transcription factors Myb and CBF-ß as putative miR-130a targets, which may regulate the primary granule proteins MPO and PRTN3 and other proteins differentially expressed following miR-130a inhibition in the 32Dcl3 clone. CONCLUSION: We have experimentally identified miR-130a-regulated proteins within the neutrophil proteome. Linking these to putative miR-130a targets, we provide an association network of potential direct and indirect miR-130a targets that expands our knowledge on the role of miR-130a in neutrophil development and is a valuable platform for further experimental studies.


Subject(s)
MicroRNAs/genetics , Neutrophils/metabolism , Proteome , Animals , Cell Line , Gene Expression Regulation , Gene Regulatory Networks , Mice , Myeloid Cells/metabolism , Proteomics/methods
17.
PLoS One ; 10(5): e0125483, 2015.
Article in English | MEDLINE | ID: mdl-25945506

ABSTRACT

The α-defensins, human neutrophil peptides (HNPs) are the predominant antimicrobial peptides of neutrophil granules. They are synthesized in promyelocytes and myelocytes as proHNPs, but only processed in promyelocytes and stored as mature HNPs in azurophil granules. Despite decades of search, the mechanisms underlying the posttranslational processing of neutrophil defensins remain unidentified. Thus, neither the enzyme that processes proHNPs nor the localization of processing has been identified. It has been hypothesized that proHNPs are processed by the serine proteases highly expressed in promyelocytes: Neutrophil elastase (NE), cathepsin G (CG), and proteinase 3 (PR3), all of which are able to process recombinant proHNP into HNP in vitro. We investigated whether serine proteases are in fact responsible for processing of proHNP in human bone marrow cells and in human and murine myeloid cell lines. Subcellular fractionation of the human promyelocytic cell line PLB-985 demonstrated proHNP processing to commence in fractions containing endoplasmic reticulum. Processing of 35S-proHNP was insensitive to serine protease inhibitors. Simultaneous knockdown of NE, CG, and PR3 did not decrease proHNP processing in primary human bone marrow cells. Furthermore, introduction of NE, CG, and PR3 into murine promyelocytic cells did not enhance the proHNP processing capability. Finally, two patients suffering from Papillon-Lefèvre syndrome, who lack active neutrophil serine proteases, demonstrated normal levels of fully processed HNP in peripheral neutrophils. Contradicting earlier assumptions, our study found serine proteases dispensable for processing of proHNPs in vivo. This calls for study of other protease classes in the search for the proHNP processing protease(s).


Subject(s)
Neutrophils/immunology , Protein Processing, Post-Translational/genetics , Serine Proteases/genetics , alpha-Defensins/genetics , Cathepsin G/genetics , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Humans , Leukocyte Elastase/genetics , Myeloblastin/genetics , Papillon-Lefevre Disease/genetics , Serine Proteases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha-Defensins/immunology
18.
Blood ; 125(17): 2669-77, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25736311

ABSTRACT

Recent studies show that mantle cell lymphoma (MCL) express aberrant microRNA (miRNA) profiles; however, the clinical effect of miRNA expression has not previously been examined and validated in large prospective homogenously treated cohorts. We performed genome-wide miRNA microarray profiling of 74 diagnostic MCL samples from the Nordic MCL2 trial (screening cohort). Prognostic miRNAs were validated in diagnostic MCL samples from 94 patients of the independent Nordic MCL3 trial (validation cohort). Three miRNAs (miR-18b, miR-92a, and miR-378d) were significantly differentially expressed in patients who died of MCL in both cohorts. MiR-18b was superior to miR-92a and miR-378d in predicting high risk. Thus, we generated a new biological MCL International Prognostic Index (MIPI-B)-miR prognosticator, combining expression levels of miR-18b with MIPI-B data. Compared to the MIPI-B, this prognosticator improved identification of high-risk patients with regard to cause-specific, overall, and progression-free survival. Transfection of 2 MCL cell lines with miR-18b decreased their proliferation rate without inducing apoptosis, suggesting that miR-18b may render MCL cells resistant to chemotherapy by decelerating cell proliferation. We conclude that overexpression of miR-18b identifies patients with poor prognosis in 2 large prospective MCL cohorts and adds prognostic information to the MIPI-B. MiR-18b may reduce the proliferation rate of MCL cells as a mechanism of chemoresistance.


Subject(s)
Lymphoma, Mantle-Cell/diagnosis , Lymphoma, Mantle-Cell/genetics , MicroRNAs/genetics , Up-Regulation , Aged , Apoptosis , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Transfection
19.
Hepatology ; 61(2): 692-702, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25234944

ABSTRACT

UNLABELLED: Lipocalin-2 (LCN2) was originally isolated from human neutrophils and termed neutrophil gelatinase-associated lipocalin (NGAL). However, the functions of LCN2 and the cell types that are primarily responsible for LCN2 production remain unclear. To address these issues, hepatocyte-specific Lcn2 knockout (Lcn2(Hep-/-)) mice were generated and subjected to bacterial infection (with Klesbsiella pneumoniae or Escherichia coli) or partial hepatectomy (PHx). Studies of Lcn2(Hep-/-) mice revealed that hepatocytes contributed to 25% of the low basal serum level of LCN2 protein (∼ 62 ng/mL) but were responsible for more than 90% of the highly elevated serum LCN2 protein level (∼ 6,000 ng/mL) postinfection and more than 60% post-PHx (∼ 700 ng/mL). Interestingly, both Lcn2(Hep-/-) and global Lcn2 knockout (Lcn2(-/-)) mice demonstrated comparable increases in susceptibility to infection with K. pneumoniae or E. coli. These mice also had increased enteric bacterial translocation from the gut to the mesenteric lymph nodes and exhibited reduced liver regeneration after PHx. Treatment with interleukin (IL)-6 stimulated hepatocytes to produce LCN2 in vitro and in vivo. Hepatocyte-specific ablation of the IL-6 receptor or Stat3, a major downstream effector of IL-6, markedly abrogated LCN2 elevation in vivo. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed that STAT3 was recruited to the promoter region of the Lcn2 gene upon STAT3 activation by IL-6. CONCLUSION: Hepatocytes are the major cell type responsible for LCN2 production after bacterial infection or PHx, and this response is dependent on IL-6 activation of the STAT3 signaling pathway. Thus, hepatocyte-derived LCN2 plays an important role in inhibiting bacterial infection and promoting liver regeneration.


Subject(s)
Bacterial Infections/blood , Hepatocytes/metabolism , Lipocalins/blood , Liver Regeneration , Oncogene Proteins/blood , Acute-Phase Proteins , Animals , Escherichia coli , Hepatectomy , Interleukin-6/metabolism , Klebsiella pneumoniae , Lipocalin-2 , Mice, Inbred C57BL , Receptors, Interleukin-6/metabolism , STAT3 Transcription Factor/metabolism
20.
PLoS One ; 9(3): e92471, 2014.
Article in English | MEDLINE | ID: mdl-24658030

ABSTRACT

Specific granule deficiency (SGD) is a rare congenital disorder characterized by recurrent infections. The disease is caused by inactivating mutations of the CCAAT/enhancer binding protein-ε (C/EBP-ε) gene. As a consequence, specific and gelatinase granules lack most matrix proteins. Furthermore, azurophil granules contain diminished amounts of their most abundant proteins, α-defensins, also known as human neutrophil peptides (HNPs). In accordance with this, in vitro models have demonstrated induction of HNPs by C/EBP-ε. Since mice do not express myeloid defensins, they cannot per se be used to characterize the role of C/EBP-ε in controlling HNP expression in vivo. We therefore crossed a transgenic HNP-1-expressing mouse with the Cebpe-/- mouse to study the in vivo significance of C/EBP-ε for HNP-1 transcription and expression. Surprisingly, neither expression nor processing of HNP-1 was affected by lack of C/EBP-ε in these mice. Transduction of C/EBP-ε into primary bone marrow cells from HNP-1 mice induced some HNP-1 expression, but not to levels comparable to expression human cells. Taken together, our data infer that the HNP-1 of the transgenic mouse does not show an expression pattern equivalent to endogenous secondary granule proteins. This limits the use of these transgenic mice as a model for human conditions.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , alpha-Defensins/biosynthesis , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , CCAAT-Enhancer-Binding Proteins/deficiency , CCAAT-Enhancer-Binding Proteins/metabolism , Humans , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Promoter Regions, Genetic/physiology , Transduction, Genetic , alpha-Defensins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...