Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Mol Syst Biol ; 20(6): 651-675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702390

ABSTRACT

The physical interactome of a protein can be altered upon perturbation, modulating cell physiology and contributing to disease. Identifying interactome differences of normal and disease states of proteins could help understand disease mechanisms, but current methods do not pinpoint structure-specific PPIs and interaction interfaces proteome-wide. We used limited proteolysis-mass spectrometry (LiP-MS) to screen for structure-specific PPIs by probing for protease susceptibility changes of proteins in cellular extracts upon treatment with specific structural states of a protein. We first demonstrated that LiP-MS detects well-characterized PPIs, including antibody-target protein interactions and interactions with membrane proteins, and that it pinpoints interfaces, including epitopes. We then applied the approach to study conformation-specific interactors of the Parkinson's disease hallmark protein alpha-synuclein (aSyn). We identified known interactors of aSyn monomer and amyloid fibrils and provide a resource of novel putative conformation-specific aSyn interactors for validation in further studies. We also used our approach on GDP- and GTP-bound forms of two Rab GTPases, showing detection of differential candidate interactors of conformationally similar proteins. This approach is applicable to screen for structure-specific interactomes of any protein, including posttranslationally modified and unmodified, or metabolite-bound and unbound protein states.


Subject(s)
alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Protein Interaction Mapping , Mass Spectrometry , Protein Binding , Proteolysis , Parkinson Disease/metabolism , rab GTP-Binding Proteins/metabolism , Protein Interaction Maps , Protein Conformation , Amyloid/metabolism , Amyloid/chemistry , Proteome/metabolism
2.
Mol Psychiatry ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361127

ABSTRACT

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-ß (Aß) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aß-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aß were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aß-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aß-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

3.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38411252

ABSTRACT

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Subject(s)
Cerebellar Neoplasms , Induced Pluripotent Stem Cells , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/metabolism , Medulloblastoma/pathology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Hedgehog Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Organoids/metabolism , Patched Receptors
4.
Nat Commun ; 14(1): 5986, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794031

ABSTRACT

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures. Here, we use a droplet printing technique to fabricate tissues comprising simplified cerebral cortical columns. Human induced pluripotent stem cells are differentiated into upper- and deep-layer neural progenitors, which are then printed to form cerebral cortical tissues with a two-layer organization. The tissues show layer-specific biomarker expression and develop a structurally integrated network of processes. Implantation of the printed cortical tissues into ex vivo mouse brain explants results in substantial structural implant-host integration across the tissue boundaries as demonstrated by the projection of processes and the migration of neurons, and leads to the appearance of correlated Ca2+ oscillations across the interface. The presented approach might be used for the evaluation of drugs and nutrients that promote tissue integration. Importantly, our methodology offers a technical reservoir for future personalized implantation treatments that use 3D tissues derived from a patient's own induced pluripotent stem cells.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Mice , Humans , Induced Pluripotent Stem Cells/metabolism , Cerebral Cortex , Neurons/physiology , Brain , Tissue Engineering/methods , Printing, Three-Dimensional , Tissue Scaffolds
5.
Nat Commun ; 14(1): 5898, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37736756

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, with additional pathophysiological involvement of non-neuronal cells such as microglia. The commonest ALS-associated genetic variant is a hexanucleotide repeat expansion (HRE) mutation in C9orf72. Here, we study its consequences for microglial function using human iPSC-derived microglia. By RNA-sequencing, we identify enrichment of pathways associated with immune cell activation and cyto-/chemokines in C9orf72 HRE mutant microglia versus healthy controls, most prominently after LPS priming. Specifically, LPS-primed C9orf72 HRE mutant microglia show consistently increased expression and release of matrix metalloproteinase-9 (MMP9). LPS-primed C9orf72 HRE mutant microglia are toxic to co-cultured healthy motor neurons, which is ameliorated by concomitant application of an MMP9 inhibitor. Finally, we identify release of dipeptidyl peptidase-4 (DPP4) as a marker for MMP9-dependent microglial dysregulation in co-culture. These results demonstrate cellular dysfunction of C9orf72 HRE mutant microglia, and a non-cell-autonomous role in driving C9orf72-ALS pathophysiology in motor neurons through MMP9 signaling.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Matrix Metalloproteinase 9/genetics , C9orf72 Protein/genetics , Microglia , Coculture Techniques , Lipopolysaccharides , Motor Neurons
6.
Cell Rep ; 42(3): 112180, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36870058

ABSTRACT

Variants at the GBA locus, encoding glucocerebrosidase, are the strongest common genetic risk factor for Parkinson's disease (PD). To understand GBA-related disease mechanisms, we use a multi-part-enrichment proteomics and post-translational modification (PTM) workflow, identifying large numbers of dysregulated proteins and PTMs in heterozygous GBA-N370S PD patient induced pluripotent stem cell (iPSC) dopamine neurons. Alterations in glycosylation status show disturbances in the autophagy-lysosomal pathway, which concur with upstream perturbations in mammalian target of rapamycin (mTOR) activation in GBA-PD neurons. Several native and modified proteins encoded by PD-associated genes are dysregulated in GBA-PD neurons. Integrated pathway analysis reveals impaired neuritogenesis in GBA-PD neurons and identify tau as a key pathway mediator. Functional assays confirm neurite outgrowth deficits and identify impaired mitochondrial movement in GBA-PD neurons. Furthermore, pharmacological rescue of glucocerebrosidase activity in GBA-PD neurons improves the neurite outgrowth deficit. Overall, this study demonstrates the potential of PTMomics to elucidate neurodegeneration-associated pathways and potential drug targets in complex disease models.


Subject(s)
Parkinson Disease , Humans , Dopaminergic Neurons/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Mutation , Neuronal Outgrowth , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Processing, Post-Translational , Proteomics
7.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36327895

ABSTRACT

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Subject(s)
Microglia
8.
Sci Rep ; 12(1): 19454, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376339

ABSTRACT

There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer's, Parkinson's, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Microglia/metabolism , Transcriptome , Cell Differentiation/genetics , Neurodegenerative Diseases/metabolism
10.
Front Immunol ; 13: 1035532, 2022.
Article in English | MEDLINE | ID: mdl-36439115

ABSTRACT

Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Zika Virus Infection , Zika Virus , Animals , Humans , Receptor, Interferon alpha-beta/genetics , Microglia/metabolism , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Interferons/pharmacology , Antiviral Agents/therapeutic use
11.
Dis Model Mech ; 15(10)2022 10 01.
Article in English | MEDLINE | ID: mdl-36254682

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia, and risk-influencing genetics implicates microglia and neuroimmunity in the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived microglia (iPSC-microglia) are increasingly used as a model of AD, but the relevance of historical immune stimuli to model AD is unclear. We performed a detailed cross-comparison over time on the effects of combinatory stimulation of iPSC-microglia, and in particular their relevance to AD. We used single-cell RNA sequencing to measure the transcriptional response of iPSC-microglia after 24 h and 48 h of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide (LPS)+interferon gamma (IFN-γ), either alone or in combination with ATPγS. We observed a shared core transcriptional response of iPSC-microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent mechanism of action. Across all conditions, we observed a significant overlap, although directional inconsistency to genes that change their expression levels in human microglia from AD patients. Using a data-led approach, we identify a common axis of transcriptomic change across AD genetic mouse models of microglia and show that only LPS provokes a transcriptional response along this axis in mouse microglia and LPS+IFN-γ in human iPSC-microglia. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/metabolism , Animals , Dinoprostone/metabolism , Disease Models, Animal , Humans , Interferon-gamma/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/pathology , Transcriptome/genetics
12.
Sci Rep ; 12(1): 12606, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871163

ABSTRACT

Motor neuron diseases such as amyotrophic lateral sclerosis are primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived spinal motor neurons and microglia, which is compatible with motor neuron identity and function. Co-cultured microglia express key identity markers and transcriptomically resemble primary human microglia, have highly dynamic ramifications, are phagocytically competent, release relevant cytokines and respond to stimulation. Further, they express key amyotrophic lateral sclerosis-associated genes and release disease-relevant biomarkers. This novel and authentic human model system facilitates the study of physiological motor neuron-microglia crosstalk and will allow the investigation of non-cell-autonomous phenotypes in motor neuron diseases such as amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Amyotrophic Lateral Sclerosis/genetics , Coculture Techniques , Humans , Microglia , Motor Neurons
13.
iScience ; 25(6): 104476, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35721463

ABSTRACT

Mutations in LRRK2 increase its kinase activity and cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab proteins which allows for their binding to RILPL1. The phospho-Rab/RILPL1 interaction causes deficits in ciliogenesis and interferes with the cohesion of duplicated centrosomes. We show here that centrosomal deficits mediated by pathogenic LRRK2 can also be observed in patient-derived iPS cells, and we have used transiently transfected cell lines to identify the underlying mechanism. The LRRK2-mediated centrosomal cohesion deficits are dependent on both the GTP conformation and phosphorylation status of the Rab proteins. Pathogenic LRRK2 does not displace proteinaceous linker proteins which hold duplicated centrosomes together, but causes the centrosomal displacement of CDK5RAP2, a protein critical for centrosome cohesion. The LRRK2-mediated centrosomal displacement of CDK5RAP2 requires RILPL1 and phospho-Rab proteins, which stably associate with centrosomes. These data provide fundamental information as to how pathogenic LRRK2 alters the normal physiology of a cell.

14.
Glia ; 70(7): 1267-1288, 2022 07.
Article in English | MEDLINE | ID: mdl-35262217

ABSTRACT

The human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes. However, the absence of microglia, with their ability to remodel neuronal networks and phagocytose apoptotic cells and debris, represents a major disadvantage for the current midbrain organoid systems. Additionally, neuroinflammation-related disease modeling is not possible in the absence of microglia. So far, no studies about the effects of human iPSC-derived microglia on midbrain organoid neural cells have been published. Here we describe an approach to derive microglia from human iPSCs and integrate them into iPSC-derived midbrain organoids. Using single nuclear RNA Sequencing, we provide a detailed characterization of microglia in midbrain organoids as well as the influence of their presence on the other cells of the organoids. Furthermore, we describe the effects that microglia have on cell death and oxidative stress-related gene expression. Finally, we show that microglia in midbrain organoids affect synaptic remodeling and increase neuronal excitability. Altogether, we show a more suitable system to further investigate brain development, as well as neurodegenerative diseases and neuroinflammation.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/metabolism , Mesencephalon , Microglia/metabolism , Neurogenesis/genetics , Organoids/metabolism
15.
J Allergy Clin Immunol ; 150(4): 955-964.e16, 2022 10.
Article in English | MEDLINE | ID: mdl-35182547

ABSTRACT

BACKGROUND: Inflammatory phenomena such as hyperinflammation or hemophagocytic lymphohistiocytosis are a frequent yet paradoxical accompaniment to virus susceptibility in patients with impairment of type I interferon (IFN-I) signaling caused by deficiency of signal transducer and activator of transcription 2 (STAT2) or IFN regulatory factor 9 (IRF9). OBJECTIVE: We hypothesized that altered and/or prolonged IFN-I signaling contributes to inflammatory complications in these patients. METHODS: We explored the signaling kinetics and residual transcriptional responses of IFN-stimulated primary cells from individuals with complete loss of one of STAT1, STAT2, or IRF9 as well as gene-edited induced pluripotent stem cell-derived macrophages. RESULTS: Deficiency of any IFN-stimulated gene factor 3 component suppressed but did not abrogate IFN-I receptor signaling, which was abnormally prolonged, in keeping with insufficient induction of negative regulators such as ubiquitin-specific peptidase 18 (USP18). In cells lacking either STAT2 or IRF9, this late transcriptional response to IFN-α2b mimicked the effect of IFN-γ. CONCLUSION: Our data suggest a model wherein the failure of negative feedback of IFN-I signaling in STAT2 and IRF9 deficiency leads to immune dysregulation. Aberrant IFN-α receptor signaling in STAT2- and IRF9-deficient cells switches the transcriptional output to a prolonged, IFN-γ-like response and likely contributes to clinically overt inflammation in these individuals.


Subject(s)
Interferon Type I , Factor IX , Humans , Interferon Type I/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-alpha , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases
17.
Front Cell Dev Biol ; 9: 740758, 2021.
Article in English | MEDLINE | ID: mdl-34805149

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with unknown cause in the majority of patients, who are therefore considered "idiopathic" (IPD). PD predominantly affects dopaminergic neurons in the substantia nigra pars compacta (SNpc), yet the pathology is not limited to this cell type. Advancing age is considered the main risk factor for the development of IPD and greatly influences the function of microglia, the immune cells of the brain. With increasing age, microglia become dysfunctional and release pro-inflammatory factors into the extracellular space, which promote neuronal cell death. Accordingly, neuroinflammation has also been described as a feature of PD. So far, studies exploring inflammatory pathways in IPD patient samples have primarily focused on blood-derived immune cells or brain sections, but rarely investigated patient microglia in vitro. Accordingly, we decided to explore the contribution of microglia to IPD in a comparative manner using, both, iPSC-derived cultures and postmortem tissue. Our meta-analysis of published RNAseq datasets indicated an upregulation of IL10 and IL1B in nigral tissue from IPD patients. We observed increased expression levels of these cytokines in microglia compared to neurons using our single-cell midbrain atlas. Moreover, IL10 and IL1B were upregulated in IPD compared to control microglia. Next, to validate these findings in vitro, we generated IPD patient microglia from iPSCs using an established differentiation protocol. IPD microglia were more readily primed as indicated by elevated IL1B and IL10 gene expression and higher mRNA and protein levels of NLRP3 after LPS treatment. In addition, IPD microglia had higher phagocytic capacity under basal conditions-a phenotype that was further exacerbated upon stimulation with LPS, suggesting an aberrant microglial function. Our results demonstrate the significance of microglia as the key player in the neuroinflammation process in IPD. While our study highlights the importance of microglia-mediated inflammatory signaling in IPD, further investigations will be needed to explore particular disease mechanisms in these cells.

18.
Trends Genet ; 37(12): 1050-1052, 2021 12.
Article in English | MEDLINE | ID: mdl-34563398

ABSTRACT

Young et al. examine the complexity of primary human microglia, and identify previously unknown cell states. Using expression quantitative trait locus (eQTL) mapping techniques, they identify 129 genes whose expression in microglia is linked to disease, and show that induced pluripotent stem cell (iPSC) models can be used for functional validation of common genetic mutations in microglia-associated diseases.


Subject(s)
Induced Pluripotent Stem Cells , Microglia , Chromosome Mapping , Humans , Microglia/metabolism , Quantitative Trait Loci/genetics
19.
Stem Cell Reports ; 16(7): 1735-1748, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34171284

ABSTRACT

Human induced pluripotent stem cells (iPSCs) and macrophages derived from them are increasingly popular tools for research into both infectious and degenerative diseases. However, as the field strives for greater modeling accuracy, it is becoming ever more challenging to justify the use of undefined and proprietary media for the culture of these cells. Here, we describe a defined, serum-free, open-source medium for the differentiation of iPSC-derived macrophages. This medium is equally capable of maintaining these cells compared with commercial alternatives. The macrophages differentiated in this medium display improved terminally differentiated cell characteristics, reduced basal expression of induced antiviral response genes, and improved polarization capacity. We conclude that cells cultured in this medium are an appropriate and malleable model for tissue-resident macrophages, on which future differentiation techniques can be built.


Subject(s)
Cell Differentiation , Culture Media, Serum-Free/pharmacology , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Biomarkers/metabolism , Cell Shape/drug effects , Cells, Cultured , HIV Infections/pathology , Homeostasis , Humans , Macrophage Activation , Macrophages/metabolism , Macrophages/virology , Phenotype , Transcription, Genetic/drug effects , Transcriptome/genetics , Zika Virus/physiology
20.
Stem Cell Reports ; 16(6): 1510-1526, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34048689

ABSTRACT

PARK2 (parkin) mutations cause early-onset Parkinson's disease (PD). Parkin is an ubiquitin E3 ligase that participates in several cellular functions, including mitochondrial homeostasis. However, the specific metabolomic changes caused by parkin depletion remain unknown. Here, we used isogenic human induced pluripotent stem cells (iPSCs) with and without PARK2 knockout (KO) to investigate the effect of parkin loss of function by comparative metabolomics supplemented with ultrastructural and functional analyses. PARK2 KO neurons displayed increased tricarboxylic acid (TCA) cycle activity, perturbed mitochondrial ultrastructure, ATP depletion, and dysregulation of glycolysis and carnitine metabolism. These perturbations were combined with increased oxidative stress and a decreased anti-oxidative response. Key findings for PARK2 KO cells were confirmed using patient-specific iPSC-derived neurons. Overall, our data describe a unique metabolomic profile associated with parkin dysfunction and show that combining metabolomics with an iPSC-derived dopaminergic neuronal model of PD is a valuable approach to obtain novel insight into the disease pathogenesis.


Subject(s)
Dopaminergic Neurons/metabolism , Energy Metabolism , Induced Pluripotent Stem Cells/metabolism , Metabolome , Mitochondria/metabolism , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphate/metabolism , Citric Acid Cycle , Gene Knockout Techniques/methods , Glycolysis , Humans , Metabolic Networks and Pathways , Mitochondria/ultrastructure , Mutation , Oxidative Stress , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...