Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Neurotrauma ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38943284

ABSTRACT

Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI during late adolescence (at ∼8 weeks old). In this study, we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice, as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Because persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we tested whether the LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb reverses mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors toward more passive action locking rather than escape behaviors in response to an aerial threat in both male and female mice, as well as prolonging the latency to escape responses in female mice. While this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this pre-clinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI during late adolescence.

2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798343

ABSTRACT

Mild traumatic brain injury (mTBI) is a significant health burden due to mTBI-related chronic debilitating cognitive and psychiatric morbidities. Recent evidence from our laboratory suggests a possible dysregulation within reward/motivational circuit function at the level of a subcortical structure, the lateral habenula (LHb), where we demonstrated a causal role for hyperactive LHb in mTBI-induced motivational deficits in self-care grooming behavior in young adult male mice when exposed to mTBI injury during late adolescence (at ~8 weeks old). Here we extended this observation by further characterizing neurobehavioral effects of this repetitive closed head injury model of mTBI in both young adult male and female mice on LHb excitability, corticotropin releasing factor (CRF) modulation of LHb activity, and behavioral responses of motivation to self-care behavior, and approach versus avoidance behavior in the presence of a social- or threat-related stimulus. We show that mTBI increases LHb spontaneous tonic activity in female mice similar to what we previously observed in male mice as well as promoting LHb neuronal hyperexcitability and hyperpolarization-induced LHb bursting in both male and female mice. Interestingly, mTBI only increases LHb intrinsic excitability in male mice coincident with higher levels of the hyperpolarization-activated cation currents (HCN/Ih) and reduces levels of the M-type potassium currents while potentiating M-currents without altering intrinsic excitability in LHb neurons of female mice. Since persistent dysregulation of brain CRF systems is suggested to contribute to chronic psychiatric morbidities and that LHb neurons are highly responsive to CRF, we then tested whether LHb CRF subsystem becomes engaged following mTBI. We found that in vitro inhibition of CRF receptor type 1 (CRFR1) within the LHb normalizes mTBI-induced enhancement of LHb tonic activity and hyperexcitability in both sexes, suggesting that an augmented intra-LHb CRF-CRFR1-mediated signaling contributes to the overall LHb hyperactivity following mTBI. Behaviorally, mTBI diminishes motivation for self-care grooming in female mice as in male mice. mTBI also alters defensive behaviors in the looming shadow task by shifting the innate defensive behaviors towards more passive action-locking rather than escape behaviors in response to an aerial threat in both male and female mice as well as prolonging the latency to escape responses in female mice. While, this model of mTBI reduces social preference in male mice, it induces higher social novelty seeking during the novel social encounters in both male and female mice. Overall, our study provides further translational validity for the use of this preclinical model of mTBI for investigation of mTBI-related reward circuit dysfunction and mood/motivation-related behavioral deficits in both sexes while uncovering a few sexually dimorphic neurobehavioral effects of this model that may differentially affect young males and females when exposed to this type of mTBI injury during late adolescence.

3.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746139

ABSTRACT

Mild traumatic brain injury (mTBI) increases the risk of cognitive deficits, affective disorders, anxiety and substance use disorder in affected individuals. Substantial evidence suggests a critical role for the lateral habenula (LHb) in pathophysiology of psychiatric disorders. Recently, we demonstrated a causal link between persistent mTBI-induced LHb hyperactivity due to synaptic excitation/inhibition (E/I) imbalance and motivational deficits in self-care grooming behavior in young adult male mice using a repetitive closed head injury mTBI model. One of the major neuromodulatory systems that is responsive to traumatic brain and spinal cord injuries, influences affective states and also modulates LHb activity is the dynorphin/kappa opioid receptor (Dyn/KOR) system. However, the effects of mTBI on KOR neuromodulation of LHb function is unknown. To address this, we first used retrograde tracing to anatomically verify that the mouse LHb indeed receives Dyn/KOR expressing projections. We identified several major KOR-expressing and Dyn-expressing synaptic inputs projecting to the mouse LHb. We then functionally evaluated the effects of in vitro KOR modulation of spontaneous synaptic activity within the LHb of male and female sham and mTBI mice at 4week post-injury using the repetitive closed head injury mTBI model. Similar to what we previously reported in the LHb of male mTBI mice, mTBI presynaptically diminished spontaneous synaptic activity onto LHb neurons, while shifting synaptic E/I toward excitation in female mouse LHb. Furthermore, KOR activation in either mouse male/female LHb generally suppressed spontaneous glutamatergic transmission without altering GABAergic transmission, resulting in a significant reduction in E/I ratios and decreased excitatory synaptic drive to LHb neurons of male and female sham mice. Interestingly following mTBI, while responses to KOR activation at LHb glutamatergic synapses were observed comparable to those of sham, LHb GABAergic synapses acquired an additional sensitivity to KOR-mediated inhibition. Thus, in contrast to sham LHb, we observed a reduction in GABA release probability in response to KOR stimulation in mTBI LHb, resulting in a chronic loss of KOR-mediated net synaptic inhibition within the LHb. Overall, our findings uncovered the previously unknown sources of major Dyn/KOR-expressing synaptic inputs projecting to the mouse LHb. Further, we demonstrate that an engagement of intra-LHb Dyn/KOR signaling provides a global suppression of excitatory synaptic drive to the mouse LHb which could act as an inhibitory braking mechanism to prevent LHb hyperexcitability. The additional engagement of KOR-mediated modulatory action on LHb GABAergic transmission by mTBI could contribute to the E/I imbalance after mTBI, with Dyn/KOR signaling serving as a disinhibitory mechanism for LHb neurons in male and female mTBI mice.

4.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509283

ABSTRACT

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Subject(s)
Corticotropin-Releasing Hormone , Habenula , Animals , Male , Mice , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Corticotropin-Releasing Hormone/metabolism , Endocannabinoids , Habenula/metabolism , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, GABA-A/metabolism , Synaptic Transmission/physiology
5.
J Neurotrauma ; 40(1-2): 125-140, 2023 01.
Article in English | MEDLINE | ID: mdl-35972745

ABSTRACT

Affective disorders including depression (characterized by reduced motivation, social withdrawal, and anhedonia), anxiety, and irritability are frequently reported as long-term consequences of mild traumatic brain injury (mTBI) in addition to cognitive deficits, suggesting a possible dysregulation within mood/motivational neural circuits. One of the important brain regions that control motivation and mood is the lateral habenula (LHb), whose hyperactivity is associated with depression. Here, we used a repetitive closed-head injury mTBI model that is associated with social deficits in adult male mice and explored the possible long-term alterations in LHb activity and motivated behavior 10-18 days post-injury. We found that mTBI increased the proportion of spontaneous tonically active LHb neurons yet decreased the proportion of LHb neurons displaying bursting activity. Additionally, mTBI diminished spontaneous glutamatergic and GABAergic synaptic activity onto LHb neurons, while synaptic excitation and inhibition (E/I) balance was shifted toward excitation through a greater suppression of GABAergic transmission. Behaviorally, mTBI increased the latency in grooming behavior in the sucrose splash test suggesting reduced self-care motivated behavior following mTBI. To show whether limiting LHb hyperactivity could restore motivational deficits in grooming behavior, we then tested the effects of Gi (hM4Di)-DREADD-mediated inhibition of LHb activity in the sucrose splash test. We found that chemogenetic inhibition of LHb glutamatergic neurons was sufficient to reverse mTBI-induced delays in grooming behavior. Overall, our study provides the first evidence for persistent LHb neuronal dysfunction due to an altered synaptic integration as causal neural correlates of dysregulated motivational states by mTBI.


Subject(s)
Brain Concussion , Habenula , Mice , Male , Animals , Habenula/physiology , Brain Concussion/complications , Neurons , Motivation , Sucrose/pharmacology
6.
Adv Drug Alcohol Res ; 2: 10115, 2022.
Article in English | MEDLINE | ID: mdl-38390618

ABSTRACT

The International Narcotics Research Conference (INRC), founded in 1969, has been a successful forum for research into the actions of opiates, with an annual conference since 1971. Every year, scientists from around the world have congregated to present the latest data on novel opiates, opiate receptors and endogenous ligands, mechanisms of analgesic activity and unwanted side effects, etc. All the important discoveries in the opiate field were discussed, often first, at the annual INRC meeting. With an apology to important events and participants not discussed, this review presents a short history of INRC with a discussion of groundbreaking discoveries in the opiate field and the researchers who presented from the first meeting up to the present.

7.
Cell Mol Neurobiol ; 41(5): 1119-1129, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33400082

ABSTRACT

The amygdala plays an important role in the integration of responses to noxious and fearful stimuli. Sensory information from many systems is integrated in the lateral and basolateral amygdala and transmitted to the central amygdala, the major output nucleus of the amygdala regulating both motor and emotional responses. The network of intercalated cells (ITC) which surrounds the lateral and basolateral amygdala and serves to modulate information flow from the lateral amygdala to the central nucleus, express a very high local concentration of mu-type opioid receptors. Loss of the ITC neurons impairs fear extinction. We demonstrate here that exposure of rats to a severe stress experience resulted in a marked downregulation of the level of expression of mu opioid receptors in the ITC nuclei over a period of at least 24 h after the end of the stress exposure. The endogenous opioid dynorphin is also expressed in the central and ITC nuclei of the amygdala. Following stress exposure, we also observed an increase in the expression in the more lateral regions of the central amygdala of pro-dynorphin mRNA and a peptide product of pro-dynorphin with known affinity for mu opioid receptors. It is possible that the downregulation of mu receptors in ITC neurons after stress may result from sustained activation and internalization of mu receptors following a stress-induced increase in the release of endogenous opioid peptides.


Subject(s)
Amygdala/metabolism , Avoidance Learning/physiology , Down-Regulation/physiology , Receptors, Opioid, mu/biosynthesis , Stress, Psychological/metabolism , Animals , Gene Expression , Male , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology
8.
Neurobiol Stress ; 13: 100267, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344720

ABSTRACT

The lateral habenula (LHb) is an epithalamic brain region associated with value-based decision making and stress evasion through its modulation of dopamine (DA)-mediated reward circuitry. Specifically, increased activity of the LHb is associated with drug addiction, schizophrenia and stress-related disorders such as depression, anxiety and posttraumatic stress disorder. Dynorphin (Dyn)/Kappa opioid receptor (KOR) signaling is a mediator of stress response in reward circuitry. Previously, we have shown that maternal deprivation (MD), a severe early life stress, increases LHb spontaneous neuronal activity and intrinsic excitability while blunting the response of LHb neurons to extrahypothalamic corticotropin-releasing factor (CRF) signaling, another stress mediator. CRF pathways also interact with Dyn/KOR signaling. Surprisingly, there has been little study of direct KOR regulation of the LHb despite its distinct role in stress, reward and aversion processing. To test the functional role of Dyn/KOR signaling in the LHb, we utilized ex-vivo electrophysiology combined with pharmacological tools in rat LHb slices. We show that activation of KORs by a KOR agonist (U50,488) exerted differential effects on the excitability of two distinct sub-populations of LHb neurons that differed in their expression of hyperpolarization-activated cation currents (HCN, Ih). Specifically, KOR stimulation increased neuronal excitability in LHb neurons with large Ih currents (Ih+) while decreasing neuronal excitability in small/negative Ih (Ih-) neurons. We found that an intact fast-synaptic transmission was required for the effects of U50,488 on the excitability of both Ih- and Ih+ LHb neuronal subpopulations. While AMPAR-, GABAAR-, or NMDAR-mediated synaptic transmission alone was sufficient to mediate the effects of U50,488 on excitability of Ih- neurons, either GABAAR- or NMDAR-mediated synaptic transmission could mediate these effects in Ih+ neurons. Consistently, KOR activation also altered both glutamatergic and GABAergic synaptic transmission where stimulation of presynaptic KORs uniformly suppressed glutamate release onto LHb neurons while primarily decreased or in some cases increased GABA release. We also found that MD significantly increased immunolabeled Dyn (the endogenous KOR agonist) labeling in neuronal fibers in LHb while significantly decreasing mRNA levels of KORs in LHb tissues compared to those from non-maternally deprived (non-MD) control rats. Moreover, the U50,488-mediated increase in LHb neuronal firing observed in non-MD rats was absent following MD. Altogether, this is the first demonstration of the existence of functional Dyn/KOR signaling in the LHb that can be modulated in response to severe early life stressors such as MD.

9.
Proc Natl Acad Sci U S A ; 117(21): 11820-11828, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393639

ABSTRACT

Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (µ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([35S]GTPγS binding and ß-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of ß-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.


Subject(s)
Opioid Peptides , Receptors, Opioid/metabolism , Signal Transduction/physiology , Animals , Cell Line, Tumor , Humans , Male , Opioid Peptides/agonists , Opioid Peptides/metabolism , Pro-Opiomelanocortin/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley
10.
Mol Pharmacol ; 98(4): 392-400, 2020 10.
Article in English | MEDLINE | ID: mdl-32234811

ABSTRACT

This brief review covers concepts in opioid pharmacology that were promoted during the period leading up to the establishment of the International Narcotics Research Conference (INRC) in the early 1970s and the discovery of endogenous opioid peptides in 1975. The founders of INRC, meeting together during the International Union of Pharmacology meeting in Basel in 1969, recognized that the time was ripe for the creation of an international society that would provide a venue for the discussion of research across disciplines in this rapidly expanding area of science. The emphasis here is on studies leading to the demonstration that specific receptors for morphine-like analgesics exist, the search for endogenous ligands for these receptors, and early attempts to elucidate the mechanisms underlying opiate drug tolerance, dependence, and addiction. SIGNIFICANCE STATEMENT: Research on opioids in the 20th century was driven by the search for nonaddicting analgesics. This review discusses the development of the "analgesic" receptor concept, the demonstration that such receptors existed, and the search for an endogenous ligand. Conceptual models were proposed to explain tolerance to the actions of opiate drugs and the development of dependence and addiction. This review explains these models and indicates how they foreshadowed more recent discoveries on the acute and chronic actions of opiate drugs.


Subject(s)
Opioid Peptides/metabolism , Opioid-Related Disorders/metabolism , Receptors, Opioid/metabolism , Animals , Congresses as Topic , Humans , International Cooperation , Ligands
11.
J Pharmacol Exp Ther ; 371(2): 500-506, 2019 11.
Article in English | MEDLINE | ID: mdl-31320493

ABSTRACT

The marked increase in deaths related to opioid drugs after 1999 was associated with an increase in the number of prescriptions for opioid drugs. This was accompanied by increasing demand for improved management of chronically painful conditions. These factors suggest that improvements are needed in the education of physicians with regard to the management of chronic pain, the optimal therapeutic application of opioid drugs, and the avoidance of substance use disorders. In this article, we address the evidence that physician education can influence prescribing practices and we discuss approaches to enhance the preclinical and clinical education of medical students in pain management and substance use disorders.


Subject(s)
Analgesics, Opioid/therapeutic use , Education, Medical/methods , Opioid Epidemic/prevention & control , Opioid-Related Disorders/prevention & control , Pain Management/methods , Students, Medical , Analgesics, Opioid/adverse effects , Chronic Pain/drug therapy , Chronic Pain/epidemiology , Curriculum , Education, Medical/trends , Humans , Opioid Epidemic/trends , Opioid-Related Disorders/epidemiology , Pain Management/trends
12.
Exp Neurol ; 309: 160-168, 2018 11.
Article in English | MEDLINE | ID: mdl-30102916

ABSTRACT

Severe early life stressors increase the probability of developing psychiatric disorders later in life through modifications in neuronal circuits controlling brain monoaminergic signaling. Our previous work demonstrated that 24 h maternal deprivation (MD) in male Sprague Dawley rats modifies dopamine (DA) signaling from the ventral tegmental area (VTA) through changes at GABAergic synapses that were reversible by in vitro histone deacetylase (HDAC) inhibition which led to restoration of the scaffold A-kinase anchoring protein (AKAP150) signaling and subsequently recovered GABAergic plasticity (Authement et al., 2015). Using a combination of in situ hybridization, Western blots and immunohistochemistry, we confirmed that MD-induced epigenetic modifications at the level of histone acetylation were associated with an upregulation of HDAC2. MD also increased Akap5 mRNA levels in the VTA. Western blot analysis of AKAP150 protein expression showed an increase in synaptic levels of AKAP150 protein in the VTA with an accompanying decrease in synaptic levels of protein kinase A (PKA). Moreover, the abundance of mature brain-derived neurotrophic factor (BDNF) protein of VTA tissues from MD rats was significantly lower than in control groups. In vivo systemic injection with a selective class I HDAC inhibitor (CI-994) was sufficient to reverse MD-induced histone hypoacetylation in the VTA for 24 h after the injection. Furthermore, HDAC inhibition normalized the levels of mBDNF and AKAP150 proteins at 24 h. Our data suggest that HDAC-mediated targeting of BDNF and AKAP-dependent local signaling within VTA could provide novel therapeutics for prevention of later-life psychopathology.


Subject(s)
A Kinase Anchor Proteins/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation/physiology , Histones/metabolism , Maternal Deprivation , Ventral Tegmental Area/metabolism , Acetylation/drug effects , Animals , Dopamine/metabolism , Enzyme Inhibitors/pharmacology , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , In Vitro Techniques , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/drug effects
13.
J Neurosci Res ; 96(4): 487-500, 2018 04.
Article in English | MEDLINE | ID: mdl-28463430

ABSTRACT

Traumatic brain injuries (TBIs) pose a massive burden of disease and continue to be a leading cause of morbidity and mortality throughout the world. A major obstacle in developing effective treatments is the lack of comprehensive understanding of the underlying mechanisms that mediate tissue damage and recovery after TBI. As such, our work aims to highlight the development of a novel experimental platform capable of fully characterizing the underlying pathobiology that unfolds after TBI. This platform encompasses an empirically optimized multiplex immunohistochemistry staining and imaging system customized to screen for a myriad of biomarkers required to comprehensively evaluate the extent of neuroinflammation, neural tissue damage, and repair in response to TBI. Herein, we demonstrate that our multiplex biomarker screening platform is capable of evaluating changes in both the topographical location and functional states of resident and infiltrating cell types that play a role in neuropathology after controlled cortical impact injury to the brain in male Sprague-Dawley rats. Our results demonstrate that our multiplex biomarker screening platform lays the groundwork for the comprehensive characterization of changes that occur within the brain after TBI. Such work may ultimately lead to the understanding of the governing pathobiology of TBI, thereby fostering the development of novel therapeutic interventions tailored to produce optimal tissue protection, repair, and/or regeneration with minimal side effects, and may ultimately find utility in a wide variety of other neurological injuries, diseases, and disorders that share components of TBI pathobiology.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Immunohistochemistry/methods , Neuroimaging/methods , Animals , Astrocytes/metabolism , Astrocytes/pathology , Biomarkers/metabolism , Brain/physiopathology , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Male , Oligodendroglia/metabolism , Oligodendroglia/pathology , Rats, Sprague-Dawley , Tongue Diseases/metabolism , Tongue Diseases/pathology
14.
ACS Chem Neurosci ; 8(10): 2266-2274, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28745861

ABSTRACT

Traumatic brain injury (TBI) is a serious public health problem and the leading cause of death in children and young adults. It also contributes to a substantial number of cases of permanent disability. As lipids make up over 50% of the brain mass and play a key role in both membrane structure and cell signaling, their profile is of particular interest. In this study, we show that advanced mass spectrometry imaging (MSI) has sufficient technical accuracy and reproducibility to demonstrate the anatomical distribution of 50 µm diameter microdomains that show changes in brain ceramide levels in a rat model of controlled cortical impact (CCI) 3 days post injury with and without treatment. Adult male Sprague-Dawley rats received one strike and were euthanized 3 days post trauma. Brain MS images showed increase in ceramides in CCI animals compared to control as well as significant reduction in ceramides in CCI treated animals, demonstrating therapeutic effect of a peptide agonist. The data also suggests the presence of diffuse changes outside of the injured area. These results shed light on the extent of biochemical and structural changes in the brain after traumatic brain injury and could help to evaluate the efficacy of treatments.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain Injuries/drug therapy , Ceramides/metabolism , Mass Spectrometry , Animals , Biomarkers/analysis , Brain/diagnostic imaging , Brain/drug effects , Brain Injuries/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Male , Mass Spectrometry/methods , Rats, Sprague-Dawley , Reproducibility of Results
15.
J Neurophysiol ; 116(3): 1093-103, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27306674

ABSTRACT

Dopamine (DA) dysfunction originating from the ventral tegmental area (VTA) occurs as a result of synaptic abnormalities following consumption of drugs of abuse and underlies behavioral plasticity associated with drug abuse. Drugs of abuse can cause changes in gene expression through epigenetic mechanisms in the brain that underlie some of the lasting neuroplasticity and behavior associated with addiction. Here we investigated the function of histone acetylation and histone deacetylase (HDAC)2 in the VTA in recovery of morphine-induced synaptic modifications following a single in vivo exposure to morphine. Using a combination of immunohistochemistry, Western blot, and whole cell patch-clamp recording in rat midbrain slices, we show that morphine increased HDAC2 activity in VTA DA neurons and reduced histone H3 acetylation at lysine 9 (Ac-H3K9) in the VTA 24 h after the injection. Morphine-induced synaptic changes at glutamatergic synapses involved endocannabinoid signaling to reduce GABAergic synaptic strength onto VTA DA neurons. Both plasticities were recovered by in vitro incubation of midbrain slices with a class I-specific HDAC inhibitor (HDACi), CI-994, through an increase in acetylation of histone H3K9. Interestingly, HDACi incubation also increased levels of Ac-H3K9 and triggered GABAergic and glutamatergic plasticities in DA neurons of saline-treated rats. Our results suggest that acute morphine-induced changes in VTA DA activity and synaptic transmission engage HDAC2 activity locally in the VTA to maintain synaptic modifications through histone hypoacetylation.


Subject(s)
Histone Deacetylase 2/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Neuronal Plasticity/drug effects , Ventral Tegmental Area/drug effects , Animals , Animals, Newborn , Benzoxazines/pharmacology , Calcium Channel Blockers/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Histone Deacetylase Inhibitors/pharmacology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Morpholines/pharmacology , Naphthalenes/pharmacology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Tyrosine 3-Monooxygenase/metabolism
16.
Pharmacol Rev ; 68(2): 419-57, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26956246

ABSTRACT

The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.


Subject(s)
Receptors, Opioid/metabolism , Animals , Humans , Ligands , Opioid Peptides/metabolism , Protein Conformation , Receptors, Opioid/chemistry , Signal Transduction , Nociceptin Receptor
17.
J Neurosci Methods ; 272: 19-32, 2016 10 15.
Article in English | MEDLINE | ID: mdl-26872743

ABSTRACT

BACKGROUND: Mild traumatic brain injury (TBI) is a common public health issue that may contribute to chronic degenerative disorders. Membrane lipids play a key role in tissue responses to injury, both as cell signals and as components of membrane structure and cell signaling. This study demonstrates the ability of high resolution mass spectrometry imaging (MSI) to assess sequences of responses of lipid species in a rat controlled cortical impact model for concussion. NEW METHOD: A matrix of implanted silver nanoparticles was implanted superficially in brain sections for matrix-assisted laser desorption (MALDI) imaging of 50µm diameter microdomains across unfixed cryostat sections of rat brain. Ion-mobility time-of-flight MS was used to analyze and map changes over time in brain lipid composition in a rats after Controlled Cortical Impact (CCI) TBI. RESULTS: Brain MS images showed changes in sphingolipids near the CCI site, including increased ceramides and decreased sphingomyelins, accompanied by changes in glycerophospholipids and cholesterol derivatives. The kinetics differed for each lipid class; for example ceramides increased as early as 1 day after the injury whereas other lipids changes occurred between 3 and 7 days post injury. COMPARISON WITH EXISTING METHOD(S): Silver nanoparticles MALDI matrix is a sensitive new tool for revealing previously undetectable cellular injury response and remodeling in neural, glial and vascular structure of the brain. CONCLUSIONS: Lipid biochemical and structural changes after TBI could help highlighting molecules that can be used to determine the severity of such injuries as well as to evaluate the efficacy of potential treatments.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Brain/diagnostic imaging , Brain/metabolism , Lipids , Mass Spectrometry , Animals , Biomarkers/metabolism , Disease Models, Animal , Disease Progression , Fiducial Markers , Male , Metal Nanoparticles , Rats, Sprague-Dawley , Silver Compounds , Time Factors
18.
J Neurochem ; 135(1): 76-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26119705

ABSTRACT

The interaction of Regulator of G protein Signaling 4 (RGS4) with the rat mu opioid receptor (MOR)/G protein complex was investigated. Solubilized MOR from rat brain membranes was immunoprecipitated in the presence of RGS4 with antibodies against the N-terminus of MOR (anti-MOR10-70 ). Activation of MOR with [D-Ala(2) , N-Me-Phe(4) , Gly(5) -ol] enkephalin (DAMGO) during immunoprecipitation caused a 150% increase in Goα and a 50% increase in RGS4 in the pellet. When 10 µM GTP was included with DAMGO, there was an additional 72% increase in RGS4 co-immunoprecipitating with MOR (p = 0.003). Guanosine 5'-O-(3-thiotriphosphate) (GTPγS) increased the amount of co-precipitating RGS4 by 93% (compared to DAMGO alone, p = 0.008), and the inclusion of GTPγS caused the ratio of MOR to RGS4 to be 1 : 1 (31 fmoles : 28 fmoles, respectively). GTPγS also increased the association of endogenous RGS4 with MOR. In His6 RGS4/Ni(2+) -NTA agarose pull down experiments, 0.3 µM GTPγS tripled the binding of Goα to His6 RGS4, whereas the addition of 100 µM GDP blocked this effect. Importantly, activation of solubilized MOR with DAMGO in the presence of 100 µM GDP and 0.3 µM GTPγS increased Goα binding to His6 RGS4/Ni(2+) -NTA agarose (p = 0.001). Regulators of G protein Signaling (RGS) shorten the time that G proteins are active. Activation of the mu opioid receptor (MOR) causes GTP to bind to and to activate Go (αoßγ). RGS4 then binds to the activated αo-GTP/MOR complex and accelerates the intrinsic GTPase of αo. After αo dissociates from MOR, RGS4 remains bound to the C-terminal region of MOR.


Subject(s)
Analgesics, Opioid/pharmacology , Guanosine Triphosphate/metabolism , RGS Proteins/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Humans , Immunoprecipitation/methods , Rats
19.
Neuron ; 86(5): 1240-52, 2015 Jun 03.
Article in English | MEDLINE | ID: mdl-26050042

ABSTRACT

Adverse early-life experiences such as child neglect and abuse increase the risk of developing addiction and stress-related disorders through alterations in motivational systems including the mesolimbic dopamine (DA) pathway. Here we investigated whether a severe early-life stress (i.e., maternal deprivation, MD) promotes DA dysregulation through an epigenetic impairment of synaptic plasticity within ventral tegmental area (VTA) DA neurons. Using a single 24-hr episode of MD and whole-cell patch clamp recording in rat midbrain slices, we show that MD selectively induces long-term depression (LTD) and shifts spike timing-dependent plasticity (STDP) toward LTD at GABAergic synapses onto VTA DA neurons through epigenetic modifications of postsynaptic scaffolding A-kinase anchoring protein 79/150 (AKAP79/150) signaling. Histone deacetylase (HDAC) inhibition rescues GABAergic metaplasticity and normalizes AKAP signaling in MD animals. MD-induced reversible HDAC-mediated GABAergic dysfunction within the VTA may be a mechanistic link for increased propensity to mental health disorders following MD.


Subject(s)
A Kinase Anchor Proteins/physiology , GABAergic Neurons/physiology , Histone Deacetylase Inhibitors/pharmacology , Maternal Deprivation , Neuronal Plasticity/physiology , Signal Transduction/physiology , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABAergic Neurons/drug effects , Male , Neuronal Plasticity/drug effects , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
20.
Br J Pharmacol ; 172(2): 317-23, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24528283

ABSTRACT

UNLABELLED: Recent developments in the study of the structure and function of opioid receptors raise significant challenges for the definition of individual receptor types and the development of a nomenclature that precisely describes isoforms that may subserve different functions in vivo. Presentations at the 2013 meeting of the International Narcotics Research Conference in Cairns, Australia, considered some of the new discoveries that are now unravelling the complexities of opioid receptor signalling. Variable processing of opioid receptor messenger RNAs may lead to the presence of several isoforms of the µ receptor. Each opioid receptor type can function either as a monomer or as part of a homo- or heterodimer or higher multimer. Additionally, recent evidence points to the existence of agonist bias in the signal transduction pathways activated through µ receptors, and to the presence of regulatory allosteric sites on the receptors. This brief review summarizes the recent discoveries that raise challenges for receptor definition and the characterization of signal transduction pathways activated by specific receptor forms. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.


Subject(s)
Receptors, Opioid/classification , Animals , Humans , Protein Isoforms/classification , Protein Isoforms/metabolism , Receptors, Opioid/metabolism , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...