Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 532, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912547

ABSTRACT

Membrane-bound organelles serve as platforms for the assembly of multi-protein complexes that function as hubs of signal transduction in eukaryotic cells. Microbial pathogens have evolved virulence factors that reprogram these host signaling responses, but the underlying molecular mechanisms are poorly understood. Here we test the ability of ~200 type III and type IV effector proteins from six Gram-negative bacterial species to interact with the eukaryotic plasma membrane and intracellular organelles. We show that over 30% of the effectors localize to yeast and mammalian cell membranes, including a subset of previously uncharacterized Legionella effectors that appear to be able to regulate yeast vacuolar fusion. A combined genetic, cellular, and biochemical approach supports that some of the tested bacterial effectors can bind to membrane phospholipids and may regulate membrane trafficking. Finally, we show that the type III effector IpgB1 from Shigella flexneri may bind to acidic phospholipids and regulate actin filament dynamics.Microbial pathogens secrete effector proteins into host cells to affect cellular functions. Here, the authors use a yeast-based screen to study around 200 effectors from six bacterial species, showing that over 30% of them interact with the eukaryotic plasma membrane or intracellular organelles.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Host-Pathogen Interactions/physiology , Bacterial Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Legionella pneumophila/metabolism , Legionella pneumophila/pathogenicity , Membrane Lipids/metabolism , Microscopy, Fluorescence , Phospholipids/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Shigella flexneri/metabolism , Shigella flexneri/pathogenicity , rac1 GTP-Binding Protein/metabolism
2.
Exp Eye Res ; 116: 79-85, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23973715

ABSTRACT

Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum suggests greater film stability especially under the high shear stress of a blink.


Subject(s)
Lipids/analysis , Meibomian Glands/chemistry , Tears/chemistry , Adult , Aged , Female , Humans , Male , Middle Aged , Spectrophotometry, Infrared , Surface Properties , Temperature
3.
Exp Eye Res ; 112: 151-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644094

ABSTRACT

Recent NMR studies suggest that unsaturation may contribute to tear film instability in adults and loss of cholesteryl esters and squalene could reduce tear film stability in adults with meibomian gland dysfunction. The proton resonances were tentatively assigned in those studies. In this current investigation, meibum from seven infants and children, one adult and a pool of adult meibum have been analyzed using an NMR spectrometer with greater sensitivity and spectral resolution. The goals of this work are to confirm/correct the previous assignments and to determine possible age-related changes in composition. The initial resonance assignments were confirmed using heteronuclear single quantum correlation spectroscopy. Because there were no significant interferences in the spectral region corresponding to the resonances for cholesteryl and wax esters, the areas of these resonances were used to calculate their molar ratios. We calculated a wax ester:cholesteryl ester molar ratio of 1:0.57 ± 0.05 for all our meibum samples and there were no age-related differences. At lower film thicknesses, the rate of evaporation measured in vitro was lower for wax esters mixed with a long chain cholesteryl ester compared to wax esters alone. However, the film thicknesses tested were non-physiological. Longer chain cholesteryl esters increase the interactions between hydrocarbon chains. Hydrocarbon chains were more saturated in meibum from infants and children compared to adults. Unsaturation may contribute to tear film instability in adults. Loss of cholesteryl ester and squalene could destabilize tear film in adults with meibomian gland dysfunction.


Subject(s)
Cholesterol Esters/analysis , Meibomian Glands/chemistry , Nuclear Magnetic Resonance, Biomolecular , Waxes/analysis , Adolescent , Adult , Aged , Aging/physiology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Spectroscopy, Fourier Transform Infrared , Tears/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...